د. خالد جلال © 079 - 9948198

طريق التفوق في الرياضيات للتوجيمي (العلمي) 2005

وحدة الاعداد المركبة

الوحدة الثالثة الاعداد المركبة

الاعداد المركبة

Complex Numbers

مثال 1

أجد قيمة الجذر الرئيس في كلِّ ممّا يأتي بدلالة 1:

2 √-72

1 √-16

🧘 اتحقّٰق من فهمي

أجد قيمة الجذر الرئيس في كلِّ ممّا يأتي بدلالة 1:

a) $\sqrt{-75}$ b) $\sqrt{-49}$

مثال 2

أجد ناتج كلِّ ممّا يأتي في أبسط صورة مُفترِضًا أنَّ i=1:

 3 i 15

🔏 أتحقُّق من فهمي

أجد ناتج كلُّ ممّا يأتي في أبسط صورة مُفترِضًا أنَّ i=1-v:

a)
$$\sqrt{-27} \times \sqrt{-48}$$

b)
$$\sqrt{-50} \times -4i$$

c)
$$i^{2021}$$

مثال 3

أجد قيمة x، وقيمة y الحقيقيتين اللتين تجعلان المعادلة: 2x - 6 + (3y + 2)i = 4x + 8i صحيحة.

🎤 أتحقُّق من فهمي

أجد قيمة x، وقيمة y الحقيقيتين اللتين تجعلان المعادلة: x+5+(4y-9)i=12-5i صحيحة.

مثال 4

أُمثِّل العدد المُركَّب ومُرافِقه بيانيًّا في المستوى المُركَّب في كلِّ ممّا يأتي:

1
$$z = -3 + 5i$$

$$2z = 6 - 4i$$

$$3 z=2i$$

🥒 أتحقُّق من فهمي

أُمثِّل العدد المُركَّب ومُرافِقه بيانيًّا في المستوى المُركَّب في كلِّ ممّا يأتي:

a)
$$z = 2 + 7i$$

b)
$$z = -3 - 2i$$

c)
$$z = -3i$$

مثال 5

أجد مقياس كل عدد مُركّب ممّا يأتى:

$$2z = 12i$$

🥻 أتحقُّق من فهمي

أجد مقياس كل عدد مُركّب ممّا يأتى:

a)
$$z = -3 - 6i\sqrt{2}$$

b)
$$z = -2i$$

c)
$$z = 4 + \sqrt{-20}$$

مثال 6

أجد سعة كلِّ من الأعداد المُركَّبة الآتية، مقربًا إجابتي لأقرب منزلتين عشريتين:

1
$$z = 4 + 3i$$

$$2z = -3 + 8i$$

1
$$z=4+3i$$
 2 $z=-3+8i$ 3 $z=-1-6i$ 4 $z=8-4i$

$$a z = 8 - 4i$$

🌈 أتحقّق من فهمي

أجد سعة كلِّ من الأعداد المُركَّبة الآتية، مقربًا إجابتي لأقرب منزلتين عشريتين:

a)
$$z = 8 + 2i$$

b)
$$z = -5 + 12i$$

c)
$$z = -2 - 3i$$

d)
$$z = 8 - 8i\sqrt{3}$$

مثال 7

أكتب العدد المُركّب ت في كل مما يأتي بالصورة المثلثية:

1)
$$|z| = 4$$
, $Arg(z) = \frac{\pi}{6}$

$$2z = -2 - 5i$$

🎤 أتحقُّق من فهمي

أكتب العدد المُركّب ع في كل مما يأتي بالصورة المثلثية:

a)
$$|z| = 4\sqrt{2}$$
, Arg $(z) = -\frac{3\pi}{4}$ b) $z = -4 - 4i$ c) $z = 2i$

b)
$$z = -4 - 4i$$

c)
$$z = 2i$$

أجد قيمة الجذر الرئيس في كلِّ ممّا يأتي بدلالة 1:

$$1 \sqrt{-19}$$

$$2\sqrt{\frac{-12}{25}}$$

$$3\sqrt{\frac{-9}{32}}$$

$$\sqrt{-53}$$

أجد ناتج كلِّ ممّا يأتي في أبسط صورة مُفترضًا أنَّ i=1:

$$(i)(2i)(-7i)$$

$$8\sqrt{-6}\times\sqrt{-6}$$

$$9\sqrt{-4}\times\sqrt{-8}$$

$$10 2i \times \sqrt{-9}$$

أكتب في كلِّ ممّا يأتي العدد المُركّب عبالصورة القياسية:

$$\frac{8+\sqrt{-16}}{2}$$

$$\frac{10-\sqrt{-50}}{5}$$

أُحدِّد الجزء الحقيقي والجزء التخيُّلي لكلِّ من الأعداد المُركَّبة الآتية، ثم أُمثِّلها جميعًا في المستوى المُركَّب نفسه:

$$u = 2 + 15i$$

$$z = 10i$$

$$16$$
 $z = -16 - 2i$

أُمثِّل العدد المُركَّب ومُرافِقه بيانيًّا في المستوى المُركَّب في كلِّ ممّا يأتي:

$$z = -15 + 3i$$

$$18 z = 8 - 7i$$

$$g = 12 + 17i$$

20
$$z = -3 - 25i$$

أجد |z|، و \overline{z} لكلِّ ممّا يأتى:

$$z = -5 + 5i$$

$$24$$
 $z = 3 + 3i\sqrt{3}$

$$z = 6 - 8i$$

أجد قِيَم كلِّ من عد، ولا الحقيقية التي تجعل كُلًّا من المعادلات الآتية صحيحة:

26
$$x^2 - 1 + i(2y - 5) = 8 + 9i$$

$$2x + 3y + i(x-2y) = 8-3i$$

28
$$y-3+i(3x+2)=9+i(y-4)$$

29
$$i(2x-5y) + 3x + 5y = 7 + 3i$$

أجد سعة كلِّ من الأعداد المُركَّبة الآتية، مقربًا إجابتي لأقرب منزلتين عشريتين:

$$32 -5 - 5i$$

33
$$1 - i\sqrt{3}$$

$$6\sqrt{3} + 6i$$

$$35 3 - 4i$$

$$36 - 12 + 5i$$

$$37 - 58 - 93i$$

$$38 \ 2i - 4$$

أكتب في كلُّ ممّا يأتي العدد المُركَّب ت في صورة مثلثية:

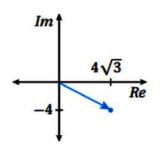
39
$$|z| = 2$$
, Arg $z = \frac{\pi}{2}$

$$|z| = 3, \text{Arg } z = \frac{\pi}{3}$$

41)
$$|z| = 7$$
, Arg $z = \frac{5\pi}{6}$

42
$$|z| = 1$$
, Arg $z = \frac{\pi}{4}$

$$z = 6$$



أجد المُركَّب المجاور التمثيل البياني للعدد المُركَّب z_1 في المستوى المُركَّب. أجد العدد المُركَّب z_2 الذي يُحقِّق ما يأتى:

$$|z_2| = 40$$
 and $\operatorname{Arg} z_2 = \operatorname{Arg} \overline{z_1}$

 $Arg(z) = \frac{3\pi}{4}$: وأنَّ: z = a + ib عيث: z = a + ib ، وأنَّ:

47 أجد قياس الزاوية المحصورة بين z و z.

أكتب العدد المُركّب z بالصورة القياسية.

إذا كان: z = -8 + 8i فأجد كُلًّا ممّا يأتى:

48 |z|

49 Arg(z)

 $|\bar{z}|$

61 Arg(\bar{z})

تبرير: إذا كان: $\alpha = Arg(5 + 2i) = \alpha$ ، فأجد سعة كلُّ ممّا يأتي بدلالة α ، مُبرِّرًا إجابتي:

-5-2i

53 5 - 2i

-5 + 2i

65 2 + 5i

66 -2 + 5i

m تحدًّ: إذا كان: z = 5 + im حيث: z = 6 ، وz = 5 + im نأجد قيمة العدد الحقيقي z = 5 + im

تبرير: إذا كان: z = 5 + 3ik، حيث: z = 13، فأجد جميع قِيم z = 5 + 3ik، مُبرِّرًا إجابتي.

 $\theta = \tan^{-1}(2)$ نحدًّ: بافتراض أنَّ z_1 عدد مُركَّب، مقياسه: $\sqrt{5}$ وسعته: z_1

أكتب z_1 في الصورة القياسية.

. أوا كان: z_1, z_2, z_3 في المستوى المُركِّب. $z_2 = 7 - 3i, z_3 = -5 + i$ في المستوى المُركِّب.

العمليات على الاعداد المركبة

Operations with Complex Numbers

مثال 1

أجد ناتج كلِّ ممّا يأتى:

$$(5+7i)+(-9-4i)$$

႔ أتحقُّق من فهمي

أجد ناتج كلُّ ممّا يأتي:

a)
$$(7+8i)+(-9+14i)$$

b)
$$(11+9i)-(4i-6i)$$

مثال 2

أجد ناتج كلُّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

1
$$5i(3-7i)$$

$$(6+2i)(7-3i)$$

$$(5+4i)(5-4i)$$

🎤 أتحقُّق من فهمي

أجد ناتج كلِّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

a)
$$-3i(4-5i)$$

b)
$$(5+4i)(7-4i)$$

c)
$$(3+6i)^2$$

مثال 3

أجد ناتج كلِّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

$$1) \frac{8-5i}{3-2i}$$

$$2 \frac{3+5i}{2i}$$

🥒 اتحقُق من فهمي

أجد ناتج كلِّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

a)
$$\frac{-4+3i}{1+i}$$

b)
$$\frac{2-6i}{-3i}$$

c)
$$\frac{7i}{4-4i}$$

مثال 4

 $z_2 = 2(\cos\frac{6\pi}{7} + i\sin\frac{6\pi}{7})$: وكان $z_1 = 10\Big(\cos\Big(-\frac{2\pi}{7}\Big) + i\sin\Big(-\frac{2\pi}{7}\Big)\Big)$ وكان فأجد ناتج كلِّ ممّا يأتي بالصورة المثلثية:

1 z₁ z₂

 $2 \frac{z_1}{z_2}$

🥖 أتحقُّق من فهمي

أجد ناتج كلُّ ممّا يأتي بالصورة المثلثية:

a)
$$6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \times 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

b)
$$6(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3})) \div 2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

مثال 5

z = 21 - 20i أجد الجذرين التربيعيين للعدد المُركِّب:

🏄 أتحقُّق من فهمي

أجد الجذرين التربيعيين لكلِّ من الأعداد المُركَّبة الآتية:

a)
$$-5 - 12i$$

c)
$$-\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

مثال 6

 $z^3 + 4z^2 + z = 26$ أجد جميع الجذور الحقيقية والجذور المُركّبة للمعادلة:

🏂 أتحقُّق من فهمي

 $z^3 - 8z^2 + 9z - 72 = 0$ أجد جميع الجذور الحقيقية والجذور المُركَّبة للمعادلة:

مثال 7

.b) (a هو أحد جذور المعادلة: a + b = 0، فأجد قيمة كلُّ من a وذا كان: a + b = 0

🧘 أتحقُّق من فهمي

.b و a فأجد قيمة كلُّ من a وذا كان: a b = a فأجد قيمة كلُّ من a وذا كان: a وأحد جذور المعادلة: a

أجد ناتج كلِّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

$$(7+2i)+(3-11i)$$

$$(5-9i)-(-4+7i)$$

$$(4-3i)(1+3i)$$

$$4 \quad (4-6i)(1-2i)(2-3i)$$

$$(9-2i)^2$$

$$6 \frac{48+19i}{5-4i}$$

أجد ناتج كلُّ ممّا يأتي بالصورة المثلثية:

9
$$12(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) \div 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$$

9
$$12(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) \div 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$$
 10 $11(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})) \times 2(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2})$

أجد القِيَم الحقيقية للثابتين a و b في كلِّ ممّا يأتى:

$$(a+6i) + (7-ib) = -2+5i$$

$$(11 - ia) - (b - 9i) = 7 - 6i$$

$$(a+ib)(2-i) = 5+5i$$

$$\frac{a-6i}{1-2i} = b+4i$$

أضرِب العدد المُركَّب
$$\frac{\pi}{4} - i \sin \frac{\pi}{4}$$
 في مُرافِقه.

إذا كان: $z_1 = 2 - 3i$ ممّا يأتى: إذا كان: $z_1 = 2 - 3i$ ممّا يأتى:

$$\mathbf{O}\frac{1}{z_3}$$

إذا كان: $(z = 8(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3})$ ؛ فأجيب عن السؤالين الآتيين تباعًا:

أجد الجذرين التربيعيين لكلِّ من الأعداد المُركَّبة الآتية:

$$(22)$$
 $-15 + 8i$

$$24 - 7 - 24i$$

إذا كان:
$$(a-3i)$$
، و $(b+ic)$ هما الجذرين التربيعيين للعدد المُركَّب: $48i-55-6$ ، فأجد قيمة كلَّ من الثوابت الحقيقية: a ، و a ، و a .

إذا كان: $z = 2(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}), w = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ فأجد كُلًّا ممّا يأتي بالصورة المثلثية:

26 zw

 $2\sqrt{\frac{z}{w}}$

 $\frac{w}{z}$

 $\frac{1}{z}$

 $30 w^2$

31 5iz

أُحُلُّ كُلًّا من المعادلات الآتية:

$$32 \quad z^2 + 104 = 20z$$

$$33 \quad z^2 + 18z + 202 = 0$$

$$34) 9z^2 + 68 = 0$$

$$35 \quad z^3 - 8z^2 + 9z - 72 = 0$$

$$36) z^3 + 4z + 10 = 5z^2$$

$$37 \quad 2z^3 = 8z^2 + 13z - 8$$

أجد معادلة تربيعية لها الجذران المُركّبان المعطيان في كلِّ ممّا يأتي:

$$38) 2 \pm 5i$$

$$40 -8 \pm 20i$$

$$41) -3 \pm 2i$$

أُحُلُّ المعادلة المعطى أحد جذورها في كلِّ ممّا يأتي:

$$42 \quad x^3 + x^2 + 15x = 225, 5$$

43
$$x^3 + 7x^2 - 13x + 45 = 0, -7$$

44
$$3x(x^2+45) = 2(19x^2+37), 6-i$$

45
$$x^3 + 10x^2 + 29x + 30 = 0, -2 + i$$

إذا كان: $(2^{2}-8z+k=0)$ هو أحد جذري المعادلة: $(2^{2}-8z+k=0)$ ، فأُجِيب عن السؤالين الآتيين تباعًا:

أجد قيمة الثابت k.

46 أجد الجذر الآخر للمعادلة.

🦠 مهارات التفكير العليا

تبرير: أُجيب عن الأستلة الثلاثة الآتية تباعًا، مُبرِّرًا إجابتي:

- ان. حيث $p = (p + iq)^2$ عددان حقيقيان.
- إذا كان: p > q = 45 + im) ، حيث p = q = 1 و p = 45 + im و p = 45 + im إذا كان: m = 10 الحقيقي m.
 - أستعمل إجابة السؤال السابق لإيجاد الجذرين التربيعيين للعدد المُركّب: 108i 45.
 - $z = |z\overline{z}|$ برهان: أُثبت أنَّ: $|z\overline{z}| = |z\overline{z}|$ لأيِّ عدد مُركَّب 51

- وكان: إذا كان z عددًا مُركَّبًا، حيث: $\left(\frac{1}{2}\right)$ عددًا مُركَّبًا، حيث: $\left(\frac{1}{2}\right)$ وكان: p+q=1 ، فأثبِت أنَّ: p+q=1
- $z^3 20z^2 + 164z 400 = 0$: تحدِّ: العدد المُركَّب: z = (10 i) (2 7i) = 0 هو أحد جذور المعادلة: $z^3 20z^2 + 164z 400 = 0$. $z^4 + 164z^2 = 20(x^4 + 20) = 0$.

للحل الهندسي في المستوى المركب

Locus in the Complex Plane

مثال 1

أجد المحل الهندسي الذي تُمثِّله المعادلة: z = |z - 2 + 8i|، ثم أكتب المعادلة بالصيغة الديكارتية.

🥖 أتحقُّق من فهمي

أجد المحل الهندسي الذي تُمثِّله المعادلة: 7 = |z+5-4i| ، ثم أكتب المعادلة بالصيغة الديكارتية.

مثال 2

إذا كانت: 3 = |3t - 5 - 3t|، فأجيب عن السؤالين الآتيين تباعًا:

- 1 أرسم المحل الهندسي الذي تُمثِّله المعادلة في المستوى المُركَّب.
 - أجد القيمة العظمى لسعة الأعداد المُركّبة ت التي تُحقّق المعادلة.

🗘 اتحقّٰق من فھمي

إذا كانت: $4 = |i| \sqrt{3}$ |i| = 4، فأُجيب عن السؤالين الآتيين تباعًا:

- a) أرسم المحل الهندسي الذي تُمثِّله المعادلة في المستوى المُركّب.
 - b) أجد القيمة العظمى لسعة الأعداد المُركّبة 2 التي تُحقّق المعادلة.

مثال 3

أجد المحل الهندسي الذي تُمثِّله المعادلة: |z-2i|=|z-2i|، ثم أكتب المعادلة بالصيغة الديكارتية.

🥒 أتحقّق من فهمي

أجد المحل الهندسي الذي تُمثِّله المعادلة: |z-5i|=|z-5i|، ثم أكتب المعادلة بالصيغة الديكارتية.

مثال 4

أجد المحل الهندسي الذي تُمثُّله كل معادلة ممّا يأتي، ثم أرسمه في المستوى المُركَّب:

2 Arg
$$(z+1+2i) = \frac{3\pi}{4}$$

🧨 أتحقُّق من فهمي

أجد المحل الهندسي الذي تُمثِّله كل معادلة ممّا يأتي، ثم أرسمه في المستوى المُركَّب:

a)
$$Arg(z) = \frac{\pi}{3}$$

b)
$$Arg(z-5) = -\frac{2\pi}{3}$$

مثال 5

أُمثِّل في المستوى المُركَّب المحل الهندسي للنقاط التي تُحقِّق كل متباينة ممّا يأتي:

1
$$|z-3| > 5$$

$$|z-7| \le |z+3i|$$

🥻 اتحقّٰق من فهمی

أُمثِّل في المستوى المُركَّب المحل الهندسي للنقاط التي تُحقِّق كل متباينة ممّا يأتي:

a)
$$|z+3+i| \le 6$$

b)
$$|z+3+i| < |z-4|$$

b)
$$|z+3+i| < |z-4|$$
 c) $\frac{\pi}{4} < \text{Arg}(z+5) \le \frac{\pi}{2}$

مثال 6

أُمثِّل في المستوى المُركَّب المحل الهندسي للنقاط التي تُحقِّق المتباينة: 5 $\geq |z-1-z|$ ، $\frac{\pi}{4} < \text{Arg}(z-1-2i) < \frac{2\pi}{3}$ والمتباينة:

🧳 اتحقُق من فهمی

أُمثُّل في المستوى المُركَّب المحل الهندسي للنقاط التي تُحقِّق المتباينة: $4 \leq |z+3-2i|$ ، $-\frac{\pi}{2}$ < Arg(z-2+i) < $\frac{\pi}{4}$: والمتباينة

أجد المحل الهندسي الذي تُمثِّله كل معادلة ممّا يأتي، ثم أُمثِّله في المستوى المُركَّب، ثم أجد معادلته الديكارتية:

$$|z| = 10$$

$$|z-9|=4$$

$$|z+2i|=8$$

$$|z-5+6i|=2$$

$$|z + \sqrt{2} + i\sqrt{2}| = 2$$

6
$$|z+6-i|=7$$

$$|z-5| = |z-3i|$$

$$|z+3i| = |z-7i|$$

$$9 |z+5+2i| = |z-7|$$

$$|z-3| = |z-2-i|$$

$$\frac{|z+6-i|}{|z-10-5i|} = 1$$

$$|z+7+2i|=|z-4-3i|$$

أجد المحل الهندسي الذي تُمثِّله كلِّ من المعادلات الآتية، ثم أرسمه في المستوى المُركَّب:

13 Arg
$$(z + 2 - 5i) = \frac{\pi}{4}$$

$$\mathbf{15} \ \operatorname{Arg}(z-4i) = -\frac{3\pi}{4}$$

أُمثِّل في المستوى المُركَّب المنطقة التي تُحدِّدها كل متباينة ممّا يأتي:

$$|z-2| < |z+2|$$

$$|z-4-2i| \leq 2$$

$$|z-4| > |z-6|$$

19
$$0 < \text{Arg}(z-2-2i) < \frac{\pi}{4}$$

20
$$-\frac{\pi}{4} \le \text{Arg}(z-3+4i) \le \frac{\pi}{4}$$
 21 $2 \le |z-3-4i| \le 4$

21)
$$2 \le |z-3-4i| \le 4$$

إذا كانت: $2 = |z - \sqrt{5} - 2i|$ ، فأُجيب عن السؤالين الآتيين تباعًا:

- أرسم المحل الهندسي الذي تُمثّله المعادلة في المستوى المُركّب.
 - أجد القيمة العظمى لسعة الأعداد المُركّبة 2 التي تُحقّق المعادلة.
- أُمثِّل في المستوى المُركَّب نفسه المحل الهندسي الذي تُمثِّله كلِّ من المعادلة: |z-3+2i|=|z-3|، والمعادلة: |z-6i| = |z-7+i| ثم أجد الأعداد المُركَّبة التي تُحقِّق المعادلتين معًا.
- أجد العدد المُركَّب الذي يُحقِّق كُلًّا من المحل الهندسي: |z-3|=|z+2i|، والمحل الهندسي: |z-3|=|z+2i||z+3-i| = |z-1+5i|

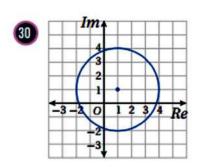
$$Arg(z+2-5i) = \frac{\pi}{4}$$
, $Arg(z+2-5i) = \frac{-\pi}{2}$, $|z+2-5i| = \sqrt{29}$

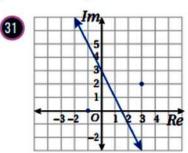
أمثّ ل في المستوى المُركّب المحل الهندسي للنقاط التي تُحقّ المتباينة:
$$|z-3| > |z+2i| > |z-3|$$
، والمتباينة: $|z+3-i| < |z-1+5i|$.

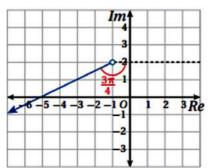
$$\frac{-\pi}{2} < \text{Arg}(z+2-5i) < \frac{\pi}{4}$$
 أُمثُــل في المستوى المُركَّب المحل الهندسي للنقاط التــي تُحقِّق المتباينــة: $|z+2-5i| < \frac{\pi}{2}$

والمتباينة:
$$\frac{\pi}{4} \le \text{Arg}(z-2i) \le \frac{\pi}{3}$$
 والمتباينة: $\frac{\pi}{4} \le \text{Arg}(z-2i) \le \frac{\pi}{3}$ والمتباينة: $\frac{\pi}{4} \le \text{Arg}(z-2i) \le \frac{\pi}{4}$ والمتباينة: $\frac{\pi}{4} \le \text{Arg}(z-2i) \le \frac{\pi}{4}$

أكتب (بدلالة z) معادلة المحل الهندسي المُمثّل بيانيًّا في كلِّ ممّا يأتي:

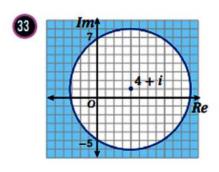


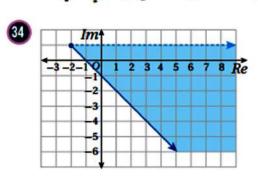




معادلة في صورة: α = (α - Arg(α - α) عدد α عدد مُركَّب، و α > α - تُمثُّل المحل الهندسي المُبيَّن في الشكل المجاور.

أكتب (بدلالة z) متباينة المحل الهندسي الذي تُمثِّله المنطقة المُظلَّلة في كلِّ ممّا يأتي:





35 أكتب (بدلالة z) نظام متباينات يُمثِّل المحل الهندسي المُبيَّن في الشكل المجاور.

😘 مهارات التفكير العليا

$$|z-a| = |z+a(2+i)|$$
 والمعادلة: $|z-a| = 2a$

$$z$$
 تبريس: إذا كان العدد المُركَّسب z يُحقِّق المعادلة: $z = |z| + 4i$ ، فأجد أكبر قيمة ليس $|z|$ وأقل قيمة له، مُبرَّرًا إجابتي.

تحدِّ: إذا كانت:
$$z = 5 + 2i$$
، فأُجيب عن السؤالين الآتيين تباعًا:

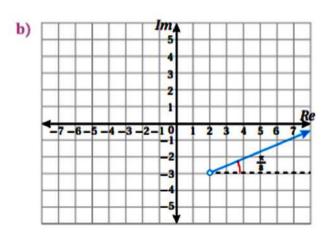
$$\frac{z}{\bar{z}} = \frac{1}{29}(21 + 20i)$$
 أبين أنَّ: (38

$$2\tan^{-1}\left(\frac{2}{5}\right) = \tan^{-1}\left(\frac{20}{21}\right)$$

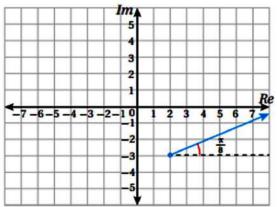
ما. تحدِّ: أُثبِت أنَّ المعادلة:
$$|z-6|=2|z+6-9i|$$
 تُمثِّل دائرة، ثم أجد مركزها وطول نصف قُطْرها.

$$Arg(z-2+3i)=\frac{\pi}{8}$$
 تبرير: أيُّ الآتية هو المحل الهندسي الذي معادلته: $\frac{\pi}{8}=(15-2+3i)$ مُبرِّرًا إجابتي؟

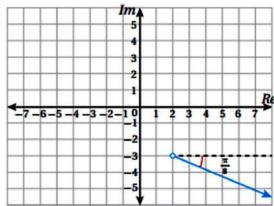




c)



d)



اختبار نهاية الوحدة



- 6 إحدى الآتية تصف المنطقة المُظلَّلة في الشكل المجاور:
- a) -1
- أختار رمز الإجابة الصحيحة في كلِّ ممّا يأتي:
 - (1) إذا كان: $i = \sqrt{-1}$ نيانً i^{343} تساوى:

b) 1

- c) -i
- (2) ناتج $(1-i)^3$ هو:

a)
$$-2 + 2i$$

b)
$$-2-2i$$

c)
$$2-2i$$

d)
$$2 + 2i$$

(1) إذا كان 2i هو أحد جذور المعادلة:

$$a_{3} = a_{3}$$
، فإنَّ قيمة $a_{3} = a_{3}$ ، فإنَّ قيمة $a_{3} = a_{3}$

d) 8

- $z = -1 + i\sqrt{3}$: الصورة المثلثية للعدد المُركَّب: $\sqrt{3}$
- a) $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$

b) -2

- b) $2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$
- c) $2(\cos\frac{\pi}{3} i\sin\frac{\pi}{3})$
- d) $2(\cos\frac{2\pi}{3} i\sin\frac{2\pi}{3})$
- الصورة القياسية لناتج: $8\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right) \div 2\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$

- a) 4i
- b) -4
- c) -4+4i
- d) 4-4i

- a) |z-1+2i| < |z+3+4i|
- b) |z-1+2i| > |z+3+4i|
- c) |z+1-2i| < |z-3-4i|
- d) |z+1-2i| > |z-3-4i|
 - أجد الجذرين التربيعيين للعدد المُركِّب: z = 45 - 28i
- ه أجد مقياس العدد المُركِّب: $w = -\frac{\sqrt{3}}{2} \frac{1}{2}i$ ، وسعته.
- w = a + 2i وكان: z = -8 + 8i حيث |z+w|=26 ، فأجد قيمة a ، علمًا بأنَّ: a<0

إذا كان: $w = \frac{14 - 31t}{3 - 3t}$ ، فأجيب عن السؤالين الآتيين تباعًا:

- x + iy أكتب العدد w في صورة: m
- 11 إذا كان العدد w هو أحد جذور المعادلة:

ناعددين عن العددين $z^2 + cz + d = 0$

الحقيقيين c، وd.

أَمثِّل في المستوى المُركَّب المنطقة التي تُحدِّدها كل متباينة ممّا يأتي:

- $|z-6| \le 3$
- $\frac{\pi}{4} \le \operatorname{Arg}(z-2) \le \frac{2\pi}{3}$
- ||z+1+i|| > |z-3-3i||

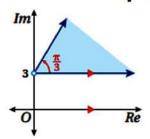
إذا مثلَّت النقطة M العدد: $a_1=1-8i$ ومثلَّت النقطة M العدد: $a_2=4+7i$ وكانت $a_3=4+7i$ عن الأسئلة الآتية تباعًا:

- 15 أبيِّن أنَّ المثلث OMN متطابق الضلعين.
- . $-\frac{4}{5}$ يساوي MON يساوي $\frac{4}{5}$.
 - 10 أجد مساحة المثلث OMN.
- المَثِّلُ في المستوى المُركَّب المحل الهندسي للنقاط التسي تُحقِّق المتباينة: |z-3| > |z+2i|، والمتباينة: $\frac{\pi}{4} < \text{Arg}(z+3-6i) < \frac{\pi}{4}$.
- القع رؤوس مثلث متطابق الأضلاع على دائرة مركزها نقطة الأصل في المستوى المُركَّب. إذا كان أحد هذه السرؤوس يُمثُّل العدد المُركَّب: (4 + 2i)، فأجد العددين المُركَّبين اللذين يُمثُّلهما الرأسان الآخران، ثم أكتب الإجابة في صورة: x + iy، حيث x، وy عددان حقيقيان.

تُمثِّل النقاط: A، وB، وC، وD جذور المعادلة: $z^4 - 6z^3 + 14z^2 - 64z + 680 = 0$

- 20 إذا كان العدد: (41 + 2-) هو أحد هذه الجذور، فأجد الجذور الثلاثة الأُخرى لهذه المعادلة.
- أمثل الجذور الأربعة في المستوى المُركَّب، ثم أجد مساحة الشكل الرباعي ABCD.

أكتب (بدلالة z) متباينة تُمثُّل المحل الهندسي المعطى في الشكل الآتي:



إذا كان: 0 = 10 + 2z + 2z، فأُجيب عن الســـــــــــــــــ الآتيين تباعًا:

- أين أنَّ لجذري المعادلة المقياس نفسه.
- اجد سعة كل جذر من جذري المعادلة.

إذا كان: $w = \frac{22+4i}{(2-i)^2}$ ، فأُجيب عن السؤالين الآتيين تباعًا:

- w = 2 + 4i أُبِيِّن أنَّ الصورة القياسية لهذا العدد هي: a_i
- وَذَا كَانَ: $\frac{3\pi}{4} \le \operatorname{Arg}(w+p) \le \frac{3\pi}{4}$ ، فأجد مجموعة القِيّم المُمكِنة للعدد الثابت p.
- يُحقِّق العددان المُركَّبان u، وv المعادلة: u + 2v = 2i. أحُلُّ المعادلين u + 2v = 2i. المعادلتين لإيجاد العدد u، والعدد v.
 - أُمثّل في المستوى المُركّب المحل الهندسي للنقاط
 التي تُحقّق المتباينة:

 $|z-2i| \le 2$: والمتباينة $\frac{\pi}{2} \le \operatorname{Arg} z \le \frac{2\pi}{3}$

اجابات كتاب الطالب وحدة الاعداد المركبة

اعداد

National Center for Curriculum Development

د.خالد جلال 0799948198 & ااياد العمد 0795604563

طريق التفوق في الرياضيات:

a

الدرس الأول: الأعداد المركبة

مسالة اليوم افترض عالِم الرياضيات الإيطالي جيرو لامو كار دانو قديمًا أنَّ القيمة: $\sqrt{-1}$ وَمُثِّل حلَّا للمعادلة: $x^2 + 1 = 0$ هل يبدو ذلك منطقيًّا؟

مسألة اليوم صفحة 140

إذا تصورنا وجود جذر تربيعي للعدد 1- في مجموعة من مجموعات الأعداد، فإن:

$$\left(\sqrt{-1}\right)^2 + 1 = -1 + 1 = 0$$

 $x^2+1=0$ وبالتالى يكون $\sqrt{-1}$ حلًا للمعادلة

أتحقق من فهمى صفحة 141

a $\sqrt{-75} = \sqrt{-1 \times 25 \times 3} = \sqrt{-1} \times \sqrt{25} \times \sqrt{3} = 5i\sqrt{3}$

b
$$\sqrt{-49} = \sqrt{-1 \times 49} = \sqrt{-1} \times \sqrt{49} = 7i$$

أتحقق من فهمي صفحة 142

 $\sqrt{-27} \times \sqrt{-48} = \sqrt{-1 \times 27} \times \sqrt{-1 \times 48}$

 $= i\sqrt{9\times3}\times i\sqrt{16\times3}$

 $= i^2 \sqrt{9 \times 3 \times 16 \times 3}$

 $=36i^2=-36$

 $\sqrt{-50} \times -4i = \sqrt{-1 \times 50} \times (-4i)$

 $=5i\sqrt{2}\times(-4i)=-20\sqrt{2}i^2=20\sqrt{2}$

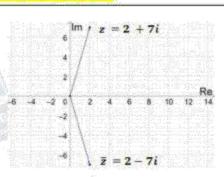
c $i^{2021} = (i^2)^{1010} \times i = (-1)^{1010} \times i = i$

أتحقق من فهمي صفحة 144

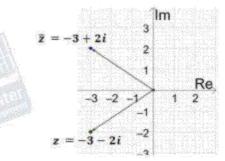
 $x+5+(4y-9)i = 12-5i \rightarrow x+5 = 12$ y 4y-9 = -5 y = 7, y = 1

أتحقق من فهمي صفحة 145

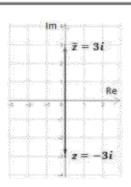
 $z=2+7i, \bar{z}=2-7i$



z = -3 - 2i, $\bar{z} = -3 + 2i$



z = -3i, $\bar{z} = 3i$



أتحقق من فهمي صفحة 146

a
$$|z = -3 - 6i\sqrt{2} \rightarrow |z| = \sqrt{(-3)^2 + (-6\sqrt{2})^2} = \sqrt{81} = 9$$

b
$$|z = -2i| \rightarrow |z| = \sqrt{(0)^2 + (-2)^2} = \sqrt{4} = 2$$

c
$$z = 4 + \sqrt{-20} = 4 + \sqrt{-1} \times \sqrt{20} = 4 + i\sqrt{20}$$

$$|z| = \sqrt{(4)^2 + (\sqrt{20})^2} = \sqrt{36} = 6$$

طريق التفوق في الرياضيات:

أتحقق من فهمى صفحة 150

a
$$z=8+2i$$

$$Arg(z) = \tan^{-1}\left(\frac{2}{8}\right) \approx 0.24$$

b
$$z = -5 + 12i$$

$$Arg(z) = \pi - \tan^{-1}\left(\frac{12}{5}\right) \approx 1.97$$

$$z = -2 - 3i$$

$$Arg(z) = -\left(\pi - \tan^{-1}\left(\frac{3}{2}\right)\right) \approx -2.16$$

$$d z = 8 - 8i\sqrt{3}$$

$$Arg(z) = -\tan^{-1}\left(\frac{8\sqrt{3}}{8}\right) \approx -\frac{\pi}{3}$$

أتحقق من فهمي صفحة 152

a
$$|z|=4\sqrt{2}, Arg(z)=-\frac{3\pi}{4}$$

$$z = r(\cos\theta + i\sin\theta) = 4\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right)$$

b
$$z = -4 - 4i$$

$$\rightarrow r = |z| = \sqrt{(-4)^2 + (-4)^2} = 4\sqrt{2}$$

$$Arg(z) = -\left(\pi - \tan^{-1}\left(\frac{4}{4}\right)\right) \approx -\frac{3\pi}{4}$$

$$z = r(\cos\theta + i\sin\theta) = 4\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right)$$

$$z = 2i$$

$$\rightarrow r = |z| = \sqrt{(0)^2 + (2)^2} = 2$$

$$Arg(z) = \frac{\pi}{2}$$

$$z = r(\cos\theta + i\sin\theta) = 2\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$$

أتدرب وأحل المسائل صفحة 152

1
$$\sqrt{-19} = \sqrt{-1 \times 19} = \sqrt{-1} \times \sqrt{19} = i\sqrt{19}$$

$$2 \qquad \sqrt{-\frac{12}{25}} = \sqrt{-1 \times \frac{12}{25}} = \sqrt{-1} \times \sqrt{\frac{12}{25}} = \frac{2\sqrt{3}}{5}i$$

$$3 - \sqrt{-\frac{9}{32}} = \sqrt{-1 \times \frac{9}{32}} = \sqrt{-1} \times \sqrt{\frac{9}{32}} = \frac{3}{4\sqrt{2}}i$$

4
$$\sqrt{-53} = \sqrt{-1 \times 53} = \sqrt{-1} \times \sqrt{53} = i\sqrt{53}$$

$$5 \quad i^{26} = (i^2)^{13} = -1$$

6
$$i^{39} = (i^2)^{19} \times i = (-1)^{19} \times i = -i$$

7
$$(i)(2i)(-7i) = (2i^2)(-7i) = (-2)(-7i) = 14i$$

$$\sqrt{-6} \times \sqrt{-6} = \sqrt{-1 \times 6} \times \sqrt{-1 \times 6}$$

$$= i\sqrt{6} \times i\sqrt{6}$$

$$= i\sqrt{6} \times i\sqrt{6}$$
$$= 6i^2 = -6$$

$$\sqrt{-4} \times \sqrt{-8} = \sqrt{-1 \times 4} \times \sqrt{-1 \times 8}$$

$$\begin{array}{c|c}
9 & = 2i \times 2\sqrt{2}i \\
 & = 4\sqrt{2}i^2 = -4\sqrt{2}
\end{array}$$

$$\begin{vmatrix}
2i \times \sqrt{-9} = 2i \times \sqrt{-1 \times 9} \\
= 2i \times 3i \\
= 6i^2 = -6
\end{vmatrix}$$

11
$$\frac{2+\sqrt{-4}}{2} = \frac{2+2i}{2} = 1+i$$

$$12 \quad \frac{8+\sqrt{-16}}{2} = \frac{8+4i}{2} = 4+2i$$

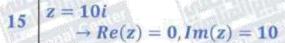
13
$$\frac{10 - \sqrt{-50}}{5} = \frac{10 - 5i\sqrt{2}}{5} = 2 - i\sqrt{2}$$

د.خالد جلال 0795604563 & الياد العمد 0795604563

طريق التفوق في الرياضيات:

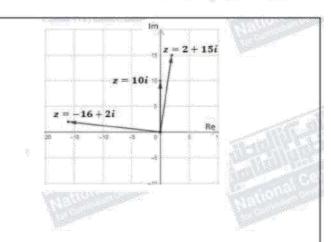
14
$$z = 2 + 15i$$

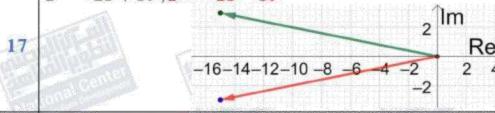
 $\rightarrow Re(z) = 2, Im(z) = 15$



16
$$z = -16 - 2i$$

 $\rightarrow Re(z) = -16, Im(z) = -2$

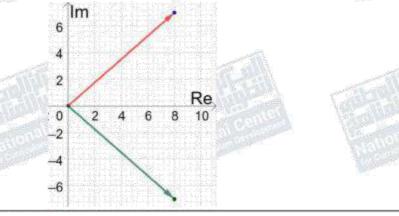


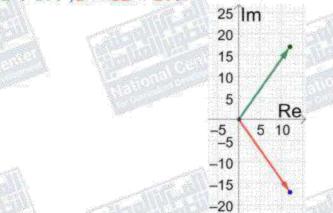


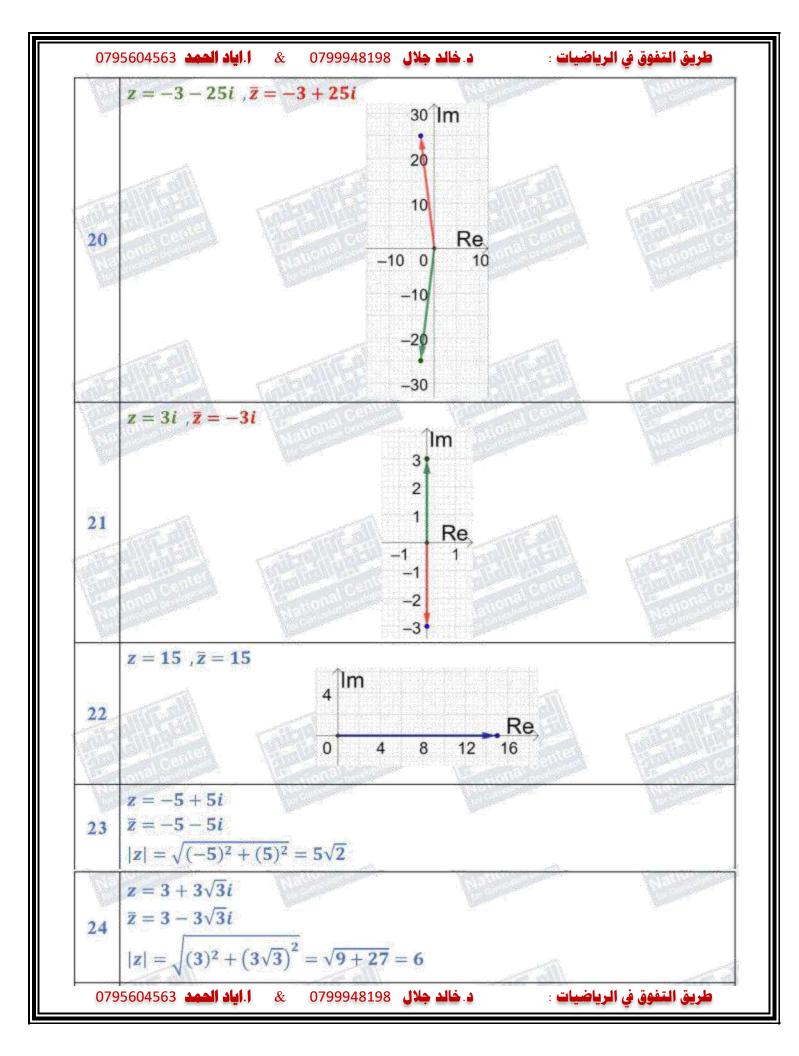
$$z=8-7i, \bar{z}=8+7i$$

18

19







07.	ا.ایاد الحمد 95604563	& 0799948198	د.خالد جلال	طريق التفوق في الرياضيات :
25	$z = 6 - 8i$ $\bar{z} = 6 + 8i$ $ z = \sqrt{(6)^2 + (-8)^2}$	$3)^2 = \sqrt{36 + 64} =$	10	
26	$x^2-1+i(2y-5)$	$)=8+9i \rightarrow x^2$		MONTAN, Suit - SC. Americal
27	2x + 3y + i(x - 2)		2x + 3y = 8 $x = 1 y =$	
28	y-3+i(3x+2)		y - 3 = 9 $y = 12$	3x + 2 = y - 4 $x = 2$
29	i(2x-5y)+3x+		2x - 5y = 3 $x = 2 y y$	
30	$z = 1$ $Arg(z) = \tan^{-1}\left(\frac{1}{2}\right)$	$\left(\begin{array}{c} 0 \\ 1 \end{array}\right) = 0$		
31	$z = 3i$ $Arg(z) = \frac{\pi}{2}$			
32	$z = -5 - 5i$ $Arg(z) = -\left(\pi - \frac{1}{2}\right)$	$\tan^{-1}\left(\frac{5}{5}\right) = -\frac{3}{2}$	$\frac{\pi}{1}$	
33	$z = 1 - i\sqrt{3}$ $Arg(z) = -\tan^{-1}$	$\left(\frac{\sqrt{3}}{1}\right) = -\frac{\pi}{3}$		
34	$z = 6\sqrt{3} + 6i$ $Arg(z) = \tan^{-1}\left(\frac{1}{2}\right)$	$\frac{6}{6\sqrt{3}}\bigg) = \frac{\pi}{6}$		
	z=3-4i	$\left(\frac{4}{3}\right) \approx -0.93$		

$$z = -12 + 5i$$

$$Arg(z) = \pi - \tan^{-1}\left(\frac{5}{12}\right) \approx 2.75$$

$$z = -58 - 93i$$

37
$$\left| Arg(z) = -\left(\pi - \tan^{-1}\left(\frac{93}{58}\right)\right) \approx -2.13 \right|$$

$$z = -4 + 2i$$

38
$$Arg(z) = \pi - \tan^{-1}\left(\frac{2}{4}\right) \approx 2.68$$

$$|r| = |z| = 2$$

$$39 \quad Arg(z) = \frac{\pi}{2}$$

$$z = r(\cos\theta + i\sin\theta) = 2\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$$

$$r = |z| = 3$$
, $Arg(z) = \frac{\pi}{3}$

$$z = r(\cos\theta + i\sin\theta) = 3\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$

$$|r| |z| = 7$$
, $Arg(z) = \frac{5\pi}{6}$

$$z = r(\cos\theta + i\sin\theta) = 7\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right)$$

$$r=|z|=1, Arg(z)=\frac{\pi}{4}$$

$$z = r(\cos\theta + i\sin\theta) = 1\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$$

$$z=6$$

$$|z| \rightarrow r = |z| = \sqrt{(6)^2 + (0)^2} = 6$$

$$Arg(z)=0$$

$$z = r(\cos\theta + i\sin\theta) = 6(\cos(0) + i\sin(0))$$

$$z = 1 + i$$

$$| \rightarrow r = |\mathbf{z}| = \sqrt{(1)^2 + (1)^2} = \sqrt{2}$$

44
$$Arg(z) = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}$$

$$z = r(\cos\theta + i\sin\theta) = \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$z_1 = 4\sqrt{3} - 4i \quad \rightarrow \ \overline{z_1} = 4\sqrt{3} + 4i$$

$$Arg(z_2) = Arg(\overline{z_1}) = \tan^{-1}\left(\frac{4}{4\sqrt{3}}\right) = \frac{\pi}{6}$$

$$|z_2| = r(\cos\theta + i\sin\theta) = 40\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$=40\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)=20\sqrt{3}+20i$$

$$z_2 = 20\sqrt{3} + 20i$$
 إذى،

$$z = r(\cos\theta + i\sin\theta) = 10\sqrt{2}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$$

$$= 10\sqrt{2} \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) = -10 + 10i$$

$$z = -10 + 10i$$
 إذن

يما أن ع في الربع الثاني إنن ع في الربع الثالث

lm

47

46

35° Re

 $\frac{\pi}{2}$ فتكون الزاوية بينهما هي

$$z = -8 + 8i$$

$$|z| = \sqrt{(-8)^2 + (8)^2} = 8\sqrt{2}$$

49
$$Arg(z) = \pi - \tan^{-1}\left(\frac{8}{8}\right) = \frac{3\pi}{4}$$

50
$$|\bar{z}| = |z| = 8\sqrt{2}$$

$$\bar{z} = -8 - 8i \rightarrow Arg(\bar{z}) = -\left(\pi - \tan^{-1}\left(\frac{8}{8}\right)\right) = -\frac{3\pi}{4}$$

51

أو نكتب مياشرة:

$$Arg(\bar{z}) = -Arg(z) = -\frac{3\pi}{4}$$

$$Arg(5+2i) = \alpha = \tan^{-1}\left(\frac{2}{5}\right)$$

$$Arg(-5-2i) = -\left(\pi - \tan^{-1}\left(\frac{2}{5}\right)\right) = -(\pi - \alpha) = -\pi + \alpha$$

53
$$Arg(5-2i) = -\tan^{-1}\left(\frac{2}{5}\right) = -\alpha$$

54
$$Arg(-5+2i) = \pi - \tan^{-1}\left(\frac{2}{5}\right) = \pi - \alpha$$

$$\mathbf{z} = 2 + 2\mathbf{i}_{\mathbf{j}} \cdot \mathbf{z} = 5 + 2\mathbf{i}_{\mathbf{j}}$$

55
$$z = 5 + 2i$$
 $rac{z = 5 + 2i}{8e}$ $Arg(2 + 5i) = tan^{-1} \left(\frac{5}{2}\right) = \frac{\pi}{2} - tan^{-1} \left(\frac{2}{5}\right) = \frac{\pi}{2} - \alpha$

56
$$Arg(-2+5i) = \pi - \tan^{-1}\left(\frac{5}{2}\right) = \pi - \left(\frac{\pi}{2} - \alpha\right) = \frac{\pi}{2} + \alpha$$

$$|z = 5 + im$$
, $|z| = 6$, $0 < Arg(z) < \frac{\pi}{2}$

$$|z|=\sqrt{(5)^2+(m)^2}=\sqrt{25+m^2}=6 \ o 25+m^2=36 \ o m=\pm\sqrt{11}$$
لكن $m=\sqrt{11}$ لكن z في الربع الأول، ومنه z الربع الأول، ومنه z

58
$$|z = 5 + 3ik, |z| = 13$$

 $|z| = \sqrt{(5)^2 + (3k)^2} = \sqrt{25 + 9k^2} = 13 \rightarrow 25 + 9k^2 = 169 \rightarrow k = \pm 4$

$$|z_1| = r = 4\sqrt{5}$$
, $Arg(z_1) = \tan^{-1}(2) = \theta$

(تستنتج هنا أن 21 يقع في الربع الأول، ففي الأرباع الأخرى تكون السعة بإشارة سالبة أو تحتوي π)

$$\tan \theta = 2 \rightarrow \sin \theta = \frac{2}{\sqrt{5}}, \cos \theta = \frac{1}{\sqrt{5}}$$

$$z_1 = r(\cos\theta + i\sin\theta) = 4\sqrt{5}(\cos\theta + i\sin\theta) = 4\sqrt{5}\left(\frac{1}{\sqrt{5}} + i\frac{2}{\sqrt{5}}\right) = 4 + 8i$$

د. خالد جلال 0795604563 & الياد العمد 0795604563

طريق التفوق في الرياضيات:

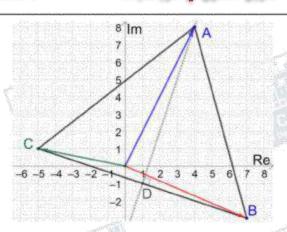
$$z_1 = 4 + 8i$$
, $z_2 = 7 - 3i$, $z_3 = -5 + i$

$$AC = \sqrt{(4 - (-5))^2 + (8 - 1)^2}$$

= $\sqrt{130}$

$$AB = \sqrt{(4-7)^2 + (8-(-3))^2}$$
$$= \sqrt{130}$$

$$BC = \sqrt{(7 - (-5))^2 + (-3 - 1)^2}$$
$$= \sqrt{160}$$



ومنه فإن المثلث ABC متطابق الضلعين، نتخذ BC قاعدة له ونجد إحداثيي النقطة D نقطة منتصف (القاعدة BC)

$$D\left(\frac{7-5}{2},\frac{-3+1}{2}\right)\to D(1,-1)$$

ارتفاع هذا المثلث هو القطعة المستقيمة الواصلة بين الرأس ومنتصف القاعدة وهو AD

$$AD = \sqrt{(4-1)^2 + (8-1)^2} = \sqrt{90}$$

لتكن مساحة المثلث ABCهي هفإن:

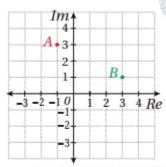
$$A = \frac{1}{2} \times \sqrt{160} \times \sqrt{90} = 60$$

إذن، مساحة المثلث ABC تساوى 60 وحدة مربعة.

د.خالد جلال 0795604563 & الياد الحمد 0795604563

طريق التفوق في الرياضيات :

الدرس الثاني: العمليات على الأعداد المركبة



مسألة اليوم مُعتمِدًا المستوى المُركَّب المجاور الذي يُبيِّن العددين المُركَّبين AB و B ، أجد السعة والمقياس للعدد المُركَّب AB.

مسألة اليوم صفحة 155

$$z_1 = -1 + 3i$$
, $z_2 = 3 + i$

$$z_1 z_2 = (-1 + 3i)(3 + i)$$

$$=-3-i+9i-3=-6+8i$$

$$|z_1 z_2| = \sqrt{36 + 64} = 10$$

$$Arg(z_1z_2) = \pi - \tan^{-1}\left(\frac{8}{6}\right) \approx 2.21$$

أتحقق من فهمي صفحة 156

a
$$(7+8i)+(-9+14i)=-2+22i$$

b
$$(11+9i)-(4-6i)=7+15i$$

أتحقق من فهمي صفحة 157

a
$$-3i(4-5i) = -12i + 15i^2 = -15 - 12i$$

b
$$(5+4i)(7-4i) = 35-20i+28i-16i^2 = 35+8i+16=51+8i$$

c
$$(3+6i)^2 = 9+36i+36i^2 = 9+36i-36 = -27+36i$$

أتحقق من فهمى صفحة 158

$$\frac{-4+3i}{1+i} = \frac{-4+3i}{1+i} \times \frac{1-i}{1-i}$$

$$=\frac{-4+4i+3i-3i^2}{1-i^2}=\frac{-4+7i+3}{1+1}=\frac{-1+7i}{2}=-\frac{1}{2}+\frac{7}{2}i$$

د.خالد جلال 0795604563 & الياد العمد 0795604563

طريق التفوق في الرياضيات :

$$\frac{2-6i}{-3i} = \frac{2-6i}{-3i} \times \frac{i}{i}$$

Ь

$$= \frac{2i - 6i^2}{-3i^2}$$
$$= \frac{2i + 6}{3} = 2 + \frac{2}{3}i$$

$$\frac{7i}{4-4i} = \frac{7i}{4-4i} \times \frac{4+4i}{4+4i}$$

,

$$= \frac{28i + 28i^{2}}{16 - 16i^{2}}$$

$$= \frac{28i - 28}{16 + 16}$$

$$= \frac{28i - 28}{32} = -\frac{7}{8} + \frac{7}{8}i$$

أتحقق من فهمي صفحة 160

21

$$6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \times 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$= 6 \times 2\left(\cos\left(\frac{\pi}{3} + \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right)\right) = 12\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

$$6\left(\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right) \div 2\left(\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)$$

$$=\frac{6}{2}\left(\cos\left(-\frac{\pi}{3}-\frac{5\pi}{6}\right)+i\sin\left(-\frac{\pi}{3}-\frac{5\pi}{6}\right)\right)$$

$$\begin{vmatrix} = 3\left(\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right) \end{vmatrix}$$

$$=3\left(\cos\left(-\frac{7\pi}{6}+2\pi\right)+i\sin\left(-\frac{7\pi}{6}+2\pi\right)\right)=3\left(\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)$$

أتحقق من فهمي صفحة 161

$$\sqrt{-5 - 12i} = x + iy \rightarrow -5 - 12i = x^2 + 2ixy + i^2y^2$$
$$\rightarrow -5 - 12i = x^2 - y^2 + 2ixy$$

$$\rightarrow -5 = x^2 - y^2$$
 $= -12 = 2xy$

$$y=-\frac{6}{x}$$

a
$$x^2 - y^2 = -5 \rightarrow x^2 - \frac{36}{x^2} = -5$$

$$\rightarrow x^4 + 5x^2 - 36 = 0$$

$$\rightarrow (x^2 + 9)(x^2 - 4) = 0 \rightarrow x = \pm 2$$

$$y=3$$
 فإن $x=-2$ وعندما $x=2$ ، فإن $y=-3$

$$2-3i$$
 , $-2+3i$ هما: $-5-12i$ الن التربيعيان للعدد المركب

$$\sqrt{-9i} = x + iy \rightarrow -9i = x^2 + 2ixy + i^2y^2$$

$$\rightarrow -9i = x^2 - y^2 + 2ixy$$

$$\rightarrow 0 = x^2 - y^2$$
 $= -9 = 2xy$

$$y = -\frac{9}{2x}$$

$$x^2 - y^2 = 0 \rightarrow x^2 - \frac{81}{4x^2} = 0$$

$$\rightarrow 4x^4 - 81 = 0$$

$$\rightarrow (2x^2 + 9)(2x^2 - 9) = 0 \rightarrow x = \pm \frac{3}{\sqrt{2}}$$

$$y=rac{3}{\sqrt{2}}$$
 فإن $x=-rac{3}{\sqrt{2}}$ و عندما $y=-rac{3}{\sqrt{2}}$ ، فإن $y=-rac{3}{\sqrt{2}}$ ، فإن

$$\frac{3}{\sqrt{2}} - \frac{3}{\sqrt{2}}i$$
 , $-\frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}i$: هما $-9i$ التربيعيان للعدد المركب المرك

$$\sqrt{-\frac{1}{2} + \frac{\sqrt{3}}{2}}i = x + iy \quad \Rightarrow -\frac{1}{2} + \frac{\sqrt{3}}{2}i = x^2 + 2ixy + i^2y^2$$

$$\Rightarrow -\frac{1}{2} + \frac{\sqrt{3}}{2}i = x^2 - y^2 + 2ixy$$

$$\Rightarrow -\frac{1}{2} = x^2 - y^2 \quad \Rightarrow \frac{\sqrt{3}}{2} = 2xy$$

أتحقق من فهمي لمثال 6 صفحة 165

$$z^3 - z^2 - 7z + 15 = 0$$

عوامل الحد الثابت هي: 15 ±5, ±5, ±1,

 $(-3)^3 - (-3)^2 - 7(-3) + 15 = 0$ بالتعويض، نجد أن العدد 3 - 2 بالتعويض أن العدد أن

إذن (2+3) هو أحد عوامل كثير الحدود، نجري عملية القسمة فنجد أن:

$$z^3 - z^2 - 7z + 15 = (z+3)(z^2 - 4z + 5) = 0$$

$$z = -3$$
, $z = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i$

-3, 2+i, 2-i إذن لهذه المعادلة 3 جذور هي:

أتحقق من فهمي لمثال 7 صفحة 165

$$x = 2 \pm i$$
 $\Rightarrow x - 2 = +i$ $\Rightarrow (x - 2)^2 = -1$ $\Rightarrow x^2 - 4x + 5 = 0$

a=-4, b=5 نجد أنْ: $(x^2+ax+b=0)$ نجد أنْ: ومقارنة هذه المعادلة مع المعادلة الم

أتدرب وأحل المسائل صفحة 165

$$1 \quad | (7+2i) + (3-11i) = 10-9i$$

$$2 \quad (5-9i) - (-4+7i) = 9-16i$$

$$(4-3i)(1+3i) = 4+12i-3i+9=13+9i$$

$$(4-6i)(1-2i)(2-3i) = (4-6i)(2-3i-4i-6)$$

$$= (4-6i)(-4-7i)$$

$$= -16-28i+24i-42$$

$$= -58-4i$$

$$5 \quad (9-2i)^2 = 81 - 36i - 4 = 77 - 36i$$

$$\frac{48+19i}{5-4i} = \frac{48+19i}{5-4i} \times \frac{5+4i}{5+4i} \\
= \frac{240+192i+95i-76}{25+16} \\
= \frac{164+287i}{41}$$

= 4 + 7i

$$6(\cos \pi + i \sin \pi) \times 2\left(\cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right)\right)$$

$$=12\left(\cos\left(\pi-\frac{\pi}{4}\right)+i\sin\left(\pi-\frac{\pi}{4}\right)\right)=12\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$

$$\left(\cos\left(\frac{3\pi}{10}\right) + i\sin\left(\frac{3\pi}{10}\right)\right) \div \left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)$$

$$8 = \cos\left(\frac{3\pi}{10} - \frac{2\pi}{5}\right) + i\sin\left(\frac{3\pi}{10} - \frac{2\pi}{5}\right) = \cos\left(-\frac{\pi}{10}\right) + i\sin\left(-\frac{\pi}{10}\right)$$

$$12\left(\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right)\div 4\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$$

$$9 = \frac{12}{4} \left(\cos \left(\frac{\pi}{4} - \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} - \frac{\pi}{3} \right) \right)$$

$$=3\left(\cos\left(-\frac{\pi}{12}\right)+i\sin\left(-\frac{\pi}{12}\right)\right)$$

اياد العمد 0795604563.	د.خالد جلال 0799948198 &	طريق التفوق في الرياضيات :
$11\left(\cos\left(-\frac{\pi}{6}\right)\right)$	$+i\sin\left(-\frac{\pi}{6}\right)$ $\times 2\left(\cos\left(\frac{3\pi}{2}\right)+i\right)$	$\sin\left(\frac{3\pi}{2}\right)$
$=22\left(\cos\left(-\frac{\pi}{6}\right)\right)$	$\left(+\frac{3\pi}{2}\right)+i\sin\left(-\frac{\pi}{6}+\frac{3\pi}{2}\right)$	
$\begin{vmatrix} 10 \\ = 22 \left(\cos \left(\frac{4\pi}{3} \right) \right) \end{vmatrix}$		
Property of the second	$\left(-2\pi\right) + i\sin\left(\frac{4\pi}{3} - 2\pi\right)$	
100	$\left(\frac{\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)$	
(a+6i)+(7-1) 11 $a+7+(6-b)$	bi) = -2 + 5i $i = -2 + 5i \rightarrow a + 7 = -2$	6-6-5
11 (4 + 7 + (6 - 6)	$\Rightarrow a = -9, b = 1$	0-0-3
(11-ia)-(b	-9i)=7-6i	
12 $11-b+(9-a)$	$a(i) = 7 - 6i \rightarrow 11 - b = 7$	9-a=-6
onal Cell	$\rightarrow b = 4$, $a = 15$	
(a+ib)(2-i)	=5+5i	No pulled to
A CONTRACT OF THE PROPERTY OF	$a)i = 5 + 5i \rightarrow 2a + b = 5$	2b-a=5
	$\rightarrow b = 3, a = 1$	200 Cm / 100 Om
		طريقة ثانية للحل:
$a+ib=\frac{5+5i}{2-i}$	THE HIDDE	
	2+i - 10+5i+10i-5	The state of the s
$=\frac{3+3i}{2-i}$	$\times \frac{2+i}{2+i} = \frac{10+3i+10i-3}{4+1}$	$= 1 + 3i \rightarrow a = 1, b = 3$
1-2i=p+4l	$\rightarrow \frac{a-6i}{1-2i} \times \frac{1+2i}{1+2i} = b+4i$	
	$\rightarrow \frac{a+2ai-6i+12}{1+4}=b+4$	
	$\rightarrow \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
Cette	a + 12 - 2a - 6	Tone Park
	$\rightarrow \frac{a+12}{5} + \frac{2a-6}{5}i = b+4i$	
	a + 12 $2a - 6$	
14	$\rightarrow \frac{a+12}{5} = b , \qquad \frac{2a-6}{5} =$	$4 \rightarrow a = 13$
	b = 5:	بتعويض قيمة a في المعادلة الأولى ينته
a-6i=(b+	$4i)(1-2i) \rightarrow a-6i=b+8$	
	$-6 = -2b + 4 \rightarrow b = 5, a$	A STATE OF THE PARTY OF THE PAR
	د.خالد جلال 0799948198 &	طريق التفوق في الرياضيات:

$$z = 8\left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)\right) = 8\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$$

$$\to \bar{z} = 8\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$\to z\bar{z} = 8\left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)\right) \times 8\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$= 64\left(\cos^2\left(\frac{\pi}{4}\right) + \sin^2\left(\frac{\pi}{4}\right)\right) = 64$$

الحل الثاني: نكتب كلا من العدين بالصورة المثلثية أولًا ثم نطبق القاعدة:

$$z = 8\left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)\right) = 8\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$$

$$\to \bar{z} = 8\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$\Rightarrow z\bar{z} = 64\left(\cos\left(\frac{-\pi}{4} + \frac{\pi}{4}\right) + i\sin\left(\frac{-\pi}{4} + \frac{\pi}{4}\right)\right) = 64$$

الحل الثالث: كتابة العددين بالصورة القياسية أولًا ثم إجراء عملية الضرب:

$$z = 8\left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)\right) = 8\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = 4\sqrt{2} - 4\sqrt{2}i$$

$$\rightarrow \bar{z} = 4\sqrt{2} + 4\sqrt{2}i$$

$$\Rightarrow z\bar{z} = (4\sqrt{2} - 4\sqrt{2}i)(4\sqrt{2} + 4\sqrt{2}i) = 32 + 32 = 64$$

$$z_1 = 2\sqrt{3} - 2i$$
 , $z_2 = \sqrt{5} - i\sqrt{15}$, $z_3 = 2 - 2i$

$$|z_1| = \sqrt{12 + 4} = 4$$

$$|z_2| = \sqrt{5 + 15} = 2\sqrt{5}$$

$$|z_3| = \sqrt{4+4} = 2\sqrt{2}$$

$$Arg(z_1) = -\tan^{-1}\left(\frac{2}{2\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$

$$Arg(z_2) = -\tan^{-1}\left(\frac{\sqrt{15}}{\sqrt{5}}\right) = -\tan^{-1}\left(\sqrt{3}\right) = -\frac{\pi}{3}$$

$$Arg(z_3) = -\tan^{-1}\left(\frac{2}{2}\right) = -\tan^{-1}(1) = -\frac{\pi}{4}$$

$$\left| \frac{z_2}{z_1} \right| = \frac{|z_2|}{|z_1|} = \frac{2\sqrt{5}}{4} = \frac{\sqrt{5}}{2}$$

$$Arg\left(\frac{z_2}{z_1}\right) = Arg(z_2) - Arg(z_1) = -\frac{\pi}{3} - (-\frac{\pi}{6}) = -\frac{\pi}{6}$$

$$\left| \frac{1}{z_3} \right| = \frac{|1|}{|z_3|} = \frac{1}{2\sqrt{2}}$$

$$Arg\left(\frac{1}{z_3}\right) = Arg(1) - Arg(z_3) = 0 - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4}$$

$$\overline{z_2} = \sqrt{5} + i\sqrt{15} \rightarrow |\overline{z_2}| = |z_2| = 2\sqrt{5}$$
, $Arg(\overline{z_2}) = -Arg(z_2) = \frac{\pi}{3}$

$$\left|\frac{\mathbf{z}_3}{\overline{\mathbf{z}_2}}\right| = \frac{|\mathbf{z}_3|}{|\overline{\mathbf{z}_2}|} = \frac{2\sqrt{2}}{2\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}}$$

$$Arg\left(\frac{z_3}{\overline{z_2}}\right) = Arg(z_3) - Arg(\overline{z_2}) = -\frac{\pi}{4} - \frac{\pi}{3} = -\frac{7\pi}{12}$$

$$z = 8\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right) = 8\left(\cos\left(\frac{-2\pi}{3}\right) + i\sin\left(\frac{-2\pi}{3}\right)\right)$$

 $\frac{-2\pi}{3}$ وسعته $\frac{-2\pi}{3}$

$$z = 8\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right) = 8\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -4 - 4\sqrt{3}i$$

$$\sqrt{-4 - 4\sqrt{3}i} = x + iy \rightarrow -4 - 4\sqrt{3}i = x^2 + 2ixy + i^2y^2$$

$$\rightarrow -4 - 4\sqrt{3}i = x^2 - y^2 + 2ixy$$

$$\rightarrow -4 = x^2 - y^2$$
 $= -4\sqrt{3} = 2xy$

20
$$y = -\frac{2\sqrt{3}}{x}$$
, $x^2 - y^2 = -4$ $\rightarrow x^2 - \frac{12}{x^2} = -4$ $\rightarrow x^4 + 4x^2 - 12 = 0$
 $\rightarrow (x^2 + 6)(x^2 - 2) = 0$ $\rightarrow x = \pm \sqrt{2}$

$$\sqrt{3-4i} = x + iy \rightarrow 3-4i = x^2 + 2ixy + i^2y^2$$

$$\rightarrow 3 - 4i = x^2 - y^2 + 2ixy$$

$$\rightarrow 3 = x^2 - y^2$$
 $= -4 = 2xy$

$$y=-\frac{2}{x}$$

21
$$x^2 - y^2 = 3 \rightarrow x^2 - \frac{4}{x^2} = 3 \rightarrow x^4 - 3x^2 - 4 = 0 \rightarrow (x^2 + 1)(x^2 - 4) = 0$$

$$ightarrow x=\pm 2$$
 عندما $y=1$ ، فإن $x=-2$ عندما $y=-1$ ، فإن $y=-1$

$$2-i$$
 , $-2+i$: ($3-4i$) ($14-2i$) (

$$\sqrt{-15+8i} = x+iy \rightarrow -15+8i = x^2+2ixy+i^2y^2$$

$$\rightarrow -15 + 8i = x^2 - y^2 + 2ixy$$

$$\rightarrow -15 = x^2 - y^2$$
 3 8 = 2xy

$$y=\frac{4}{x}$$

22
$$x^2 - y^2 = -15 \rightarrow x^2 - \frac{16}{x^2} = -15 \rightarrow x^4 + 15x^2 - 16 = 0$$

$$\rightarrow (x^2 + 16)(x^2 - 1) = 0 \rightarrow x = \pm 1$$

$$y = -4$$
 فإن $x = -1$ وعندما $x = 1$ فإن $x = 1$

$$1+4i$$
 , $-1-4i$ هما: $15+8i$ اذن الجذران التربيعيان للعدد المركب $15+8i$

$$\sqrt{5-12i} = x + iy \rightarrow 5-12i = x^2 + 2ixy + i^2y^2$$

$$\rightarrow 5 - 12i = x^2 - y^2 + 2ixy$$

$$\rightarrow 5 = x^2 - y^2$$
 3 - 12 = 2xy

$$y=-\frac{6}{x}$$

23
$$x^2 - y^2 = 5 \rightarrow x^2 - \frac{36}{x^2} = 5 \rightarrow x^4 - 5x^2 - 36 = 0$$

$$\rightarrow (x^2 + 4)(x^2 - 9) = 0 \rightarrow x = \pm 3$$

$$y=2$$
 فإن $x=-3$ وعندما $x=3$ فإن $y=-2$

$$3-2i$$
 , $-3+2i$ هما: $5-12i$ المركب العدد المركب المركب

$$\sqrt{-7-24i} = x+iy \rightarrow -7-24i = x^2+2ixy+i^2y^2$$

$$\rightarrow -7-24i = x^2-y^2+2ixy$$

$$\rightarrow -7-24i = x^2-y^2+2ixy$$

$$\rightarrow -7-24i = x^2-y^2+2ixy$$

$$\rightarrow -7-24i = x^2-y^2+2ixy$$

$$y = -\frac{12}{x}$$

$$24 \quad x^2-y^2 = -7 \rightarrow x^2-\frac{144}{x^2}=-7$$

$$\rightarrow x^4+7x^2-144=0$$

$$\rightarrow (x^2+16)(x^2-9)=0 \rightarrow x=\pm 3$$

$$y=4 \text{ id.} i \cdot x=-3 \text{ table} i \cdot x=3 \text{ table} i \cdot x=3 \text{ table} i$$

$$3-4i \quad , -3+4i \quad \text{table} i-7-24i \quad \text{table} i \cdot x=3 \text{ table} i$$

$$(a-3i)^2=55-48i \rightarrow a^2-6ia-9=55-48i \quad \Rightarrow a^2-9=55, -6a=-48 \rightarrow a=8$$

$$2 \quad y=55-48i \quad \Rightarrow a^2-9=55, -6a=-48 \rightarrow a=8$$

$$2 \quad y=55-48i \quad \Rightarrow b^2+2ibc-c^2=55-48i \quad \Rightarrow b^2-c^2=55, 2bc=-48$$

$$2 \quad \Rightarrow b^2-c^2=55, 2bc=-48$$

$$2 \quad \Rightarrow b^2-c^2=55, 2bc=-48$$

$$2 \quad \Rightarrow c=\frac{24}{b} \quad b^2-\frac{576}{b^2}=55$$

$$\Rightarrow b^4-55b^2-576=0 \quad \Rightarrow (b^2-64)(b^2+9)=0 \rightarrow b=\pm 8$$

$$c=3 \quad \text{till} i \text{ table} i \text{ the color } i \text{ table} i \text{ the color } i \text{ table} i \text{ table}$$

$$z = 2\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right) = 2\left(\cos(\frac{-\pi}{4}) + i\sin(\frac{-\pi}{4})\right), w = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$zw = 4\left(\cos\left(\frac{-\pi}{4} + \frac{\pi}{3}\right) + i\sin\left(\frac{-\pi}{4} + \frac{\pi}{3}\right)\right) = 4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$

$$zw = 4\left(\cos\left(\frac{-\pi}{4} - \frac{\pi}{3}\right) + i\sin\left(\frac{-\pi}{4} - \frac{\pi}{3}\right)\right) = \cos(\frac{-7\pi}{12}) + i\sin(\frac{-7\pi}{12})$$

$$w = (4 - 3) (4 - 3) (12) (12)$$

$$28 \left| \frac{w}{z} = 1 \left(\cos \left(\frac{\pi}{3} - \frac{-\pi}{4} \right) + i \sin \left(\frac{\pi}{3} - \frac{-\pi}{4} \right) \right) = \cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}$$

$$1 = 1(\cos 0 + i \sin 0)$$

$$\frac{1}{z} = \frac{1}{2} \left(\cos \left(0 - \frac{-\pi}{4} \right) + i \sin \left(0 - \frac{-\pi}{4} \right) \right) = \frac{1}{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

30
$$w^2 = ww = 4\left(\cos\left(\frac{\pi}{3} + \frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3} + \frac{\pi}{3}\right)\right) = 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

$$5i = 5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

$$5iz = 5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \times 2\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$$

$$= 10\left(\cos\left(\frac{\pi}{2} + \frac{-\pi}{4}\right) + i\sin\left(\frac{\pi}{2} + \frac{-\pi}{4}\right)\right)$$

$$=10\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$

$$z^2 + 104 = 20z \rightarrow z^2 - 20z + 104 = 0$$

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{20 \pm \sqrt{400 - 416}}{2} = \frac{20 \pm \sqrt{-16}}{2}$$

$$z = \frac{20 \pm 4i}{2} = 10 \pm 2i$$

$$10 - 2i$$
 و $10 + 2i$ و أذن، لهذه المعادلة جذران هما: $2i + 10$ ، و

$$z^2 + 18z + 202 = 0$$

33

34

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$=\frac{-18\pm\sqrt{324-808}}{2}$$

$$=\frac{-18\pm\sqrt{-484}}{2}$$

$$=\frac{-18\pm22i}{2}=-9\pm11i$$

-9-11i إذن، لهذه المعادلة جدران هما: 11i+9-i و

$$9z^2 + 68 = 0 \rightarrow z^2 = -\frac{68}{9} \rightarrow z = \pm \sqrt{-\frac{68}{9}} = \pm i \frac{\sqrt{68}}{3}$$

 $-irac{\sqrt{68}}{3}$ و $irac{\sqrt{68}}{3}$ ، $irac{\sqrt{68}}{3}$ ، و

$$3z^3 - 2z^2 + 2z + 1 = 0$$

 $\pm 1, \pm \frac{1}{3}$ الأصفار النسبية المحتملة هي:

بالتعويض، نجد أن العدد $z=-rac{1}{3}$ يحقق المعادلة لأن:

$$3\left(-\frac{1}{3}\right)^3 - 2\left(-\frac{1}{3}\right)^2 + 2\left(-\frac{1}{3}\right) + 1 = 0$$

35
$$z = -\frac{1}{3} \rightarrow 3z = -1 \rightarrow 3z + 1 = 0$$

إذن (1 + 3z) هو أحد عوامل كثير الحدود، نجري عملية القسمة فنجد أنَ:

$$3z^3 - 2z^2 + 2z + 1 = (3z + 1)(z^2 - z + 1) = 0$$

$$\rightarrow z = -\frac{1}{3}$$
, $z = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm i\sqrt{3}}{2} = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}$

 $-\frac{1}{3}$, $\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $\frac{1}{2} - i\frac{\sqrt{3}}{2}$: إذن لهذه المعادلة 3 حلول (جذور) هي:

الأصفار النسبية المحتملة هي: 10 + 1, +2, +5 + 1 بالتعويض، نجد أن العدد z = -1 يحقق المعادلة لأن:

$$(-1)^3 - 5(-1)^2 + 4(-1) + 10 = 0$$

إذن (z+1) هو أحد عوامل كثير الحدود، نجري عملية القسمة فنجد أن:

$$z^3 - 5z^2 + 4z + 10 = (z+1)(z^2 - 6z + 10) = 0$$
 $6 \pm \sqrt{36 - 4}$

$$\rightarrow z = -1$$
, $z = \frac{6 \pm \sqrt{36 - 40}}{2} = \frac{6 \pm 2i}{2} = 3 \pm i$

-1, 3+i, 3-i (جنور) هي: 1-3+i, 3-i

$$2z^3 = 8z^2 + 13z - 87 \rightarrow 2z^3 - 8z^2 - 13z + 87 = 0$$

 $\pm 1, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm 3, \pm 29, \pm \frac{29}{2}, \frac{87}{2}, \pm 87$ الأصفار النسبية المحتملة هي: 87 $\pm 1, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm 3, \pm 29, \pm \frac{29}{2}, \pm \frac{87}{2}, \pm \frac{1}{2}$

بالتعويض، نجد أن العدد z = -3 يحقق المعادلة لأن:

$$2(-3)^3 - 8(-3)^2 - 13(-3) + 87 = 0$$

إذن (2+3) هو أحد عوامل كثير الحدود، تجرى عملية القسمة فنجد أن:

$$|2z^3 - 8z^2 - 13z + 87 = (z+3)(2z^2 - 14z + 29) = 0$$

$$\rightarrow z = -3$$
, $z = \frac{14 \pm \sqrt{196 - 232}}{4}$

$$\Rightarrow z = -3$$
, $z = \frac{14 \pm \sqrt{-36}}{4} = \frac{14 \pm 6i}{4} = \frac{7}{2} \pm \frac{3}{2}i$

$$-3, \frac{7}{2} + \frac{3}{2}i, \frac{7}{2} - \frac{3}{2}i$$
 إذن لهذه المعادلة 3 حلول (جنور) هي:

$$x=2\pm5i$$

$$x - 2 = +5i$$

$$(x-2)^2 = -25$$

$$x^2 - 4x + 4 = -25$$

$$x^2 - 4x + 29 = 0$$

طريقة أخرى للحل:

$$x^2 - bx + c = 0$$
 نعلم أنه إذا كان h و k هما جذرا المعادلة التربيعية

$$c = hk$$
 و $b = h + k$

$$x^2 - 4x + 29 = 0$$
 (i.i.) المعادلة هي:

x	=	7	+	41

$$x-7=\pm 4i$$

$$(x-7)^2 = -16$$

$$x^2 - 14x + 49 = -16$$

$$x^2 - 14x + 65 = 0$$

طريقة أخرى للحل:

مجموع الجذرين يساوي: 14، وناتج ضربهما

يساوى: 65 = 16 + 49

$$x^2 - 14x + 65 = 0$$
 إذن، المعادلة هي:

$$x = -8 + 20i$$

$$x + 8 = +20i$$

$$(x+8)^2 = -400$$

$$x^2 + 16x + 64 = -400$$

$$x^2 + 16x + 464 = 0$$

مجموع الجذرين يساوي: 16-، وناتج ضربهما

يساوى: 464 = 400 + 64

$$x^2 + 16x + 464 = 0$$
 إذن، المعادلة هي:

$$x = -3 + 2i$$

40

43

$$x + 3 = +2i$$

$$(x+3)^2 = -4$$

$$x^2 + 6x + 9 = -4$$

$$\begin{vmatrix} 41 & x^2 + 6x + 13 = 0 \end{vmatrix}$$

طريقة أخرى للحل:

مجموع الجذرين يساوي: 6-، وناتج ضربهما

يساوى: 13 = 4 + 9

$$x^2 + 6x + 13 = 0$$
 إذن، المعادلة هي:

$$x^3 + x^2 + 15x = 225 \rightarrow x^3 + x^2 + 15x - 225 = 0$$

بما أن 5 جذر لهذه المعادلة، إذن (5 - x) أحد عوامل كثير الحدود، بالقسمة عليه تحصل على:

$$x^3 + x^2 + 15x - 225 = (x - 5)(x^2 + 6x + 45) = 0$$

$$x = 5, x = \frac{-6 \pm \sqrt{36 - 180}}{2} = \frac{-6 \pm \sqrt{-144}}{2} = \frac{-6 \pm 12i}{2} = -3 \pm 6i$$

$$x = 5, x = -3 + 6i, x = -3 - 6i$$
 حلول هذه المعادلة هي:

$$x^3 + 7x^2 - 13x + 45 = 0$$

بما أن 9- جذر لهذه المعادلة، إذن (x + 9) أحد عوامل كثير الحدود، بالقسمة عليه نحصل على:

$$x^3 + 7x^2 - 13x + 45 = (x+9)(x^2 - 2x + 5) = 0$$

$$x = -9, x = \frac{2 \pm \sqrt{4 - 20}}{2} = \frac{2 \pm \sqrt{-16}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$$

$$x = -9, x = 1 + 2i, x = 1 - 2i$$
 حلول هذه المعادلة هي:

 $3x(x^2+45) = 2(19x^2+37) \rightarrow 3x^3-38x^2-135x-74=0$

بما أن (i-6) جنر لهذه المعادلة، إنن مرافقه (i+6) هو أيضًا جنر لهذه المعادلة،

(6+i)، (6-i) نكون المعادلة التربيعية التي جنراها

x = 6 + i

$$x-6=\pm i$$

$$(x-6)^2 = -1$$

 $44 \quad x^2 - 12x + 36 = -1$

 $x^2 - 12x + 37 = 0$

ثم نقسم كثير الحدود $74 - x^2 - 135x - 3x^3 - 38x^2 - 37$ على $x^2 - 12x + 37$ فنجد أن:

 $3x^3 - 38x^2 - 135x - 74 = (x^2 - 12x + 37)(3x - 2) = 0$

$$\rightarrow x = \frac{2}{3}, x = 6 \pm i$$

 $x = \frac{2}{3}, x = 6 + i, x = 6 - i$ حلول هذه المعلالة هي:

 $x^3 + 10x^2 + 29x + 30 = 0$

بما أن (-2+i) جدر لهذه المعادلة، إذن مرافقه (-2-i) هو أيضًا جدر لهذه المعادلة،

نكون المعادلة التربيعية التي جذراها (-2-i)، (-2-i):

 $x = -2 \pm i$

$$x+2=+i$$

45

$$(x+2)^2 = -1$$

 $x^2 + 4x + 4 = -1$

$$x^2 + 4x + 5 = 0$$

ثم نقسم كثير الحدود $x^2 + 4x + 5$ على $x^3 + 10x^2 + 29x + 30$ فنجد أن:

 $x^3 + 10x^2 + 29x + 30 = (x^2 + 4x + 5)(x + 6) = 0$

$$\rightarrow x = -6, x = -2 \pm i$$

x = -6, x = -2 + i, x = -2 - i حلول هذه المعادلة هي:

الجدر الأخر هو مرافق الجدر الأول، أي 11i — 4

0/330	, , , , , , , , , , , , , , , , , , ,
47 k	$t = (4 - 11i)(4 + 11i) = 16 - 121i^2 = 16 + 121 = 137$
48 ($(p+iq)^2 = p^2 + 2ipq + i^2q^2 = p^2 + 2ipq - q^2$
($(p+iq)^2 = 45 + im = p^2 - q^2 + 2ipq$
- W	$\Rightarrow p^2 - q^2 = 45 , m = 2pq$
-0 00	$p^2 - q^2 = 45 \rightarrow (p+q)(p-q) = 45$
Ā	p>q فإن $p>q$ عددان صحيحان موجبان و $p>q$ فإن $p>q$ فإن صحيحان عددان صحيحان
	جبان أيضًا و $(p+q)>(p-q)$ ومنه يكفي تحليل العدد 45 إلى عاملين صحيحين موجبين
18.10	دهما أكبر من الأخر، لدينا ثلاث حالات لتحليل 45 إلى عاملين صحيحين موجبين هي:
	p-q=1 و $p+q=45$ فإن: $p+q=45$ و المارة الأولى: $p+q=45$
49	m = 2pq = 1012 نه: $q = 22$ و $q = 22$ و $p = 23$
	p-q=3 عالة الثانية: $p+q=15$ فإن: $p+q=15$ عالة الثانية: و
	m=2pq=108 نه: $q=6$ و $q=6$ اي ان: $q=6$
	p-q=5 و $p+q=9$ و $p+q=9$ عالمة الثالثة: $p+q=9$ فان:
	m=2pq=28 نه: $p=7$ و $q=2$ اي ان:
	م m المطلوبة هي: 28,108,1012
<u> </u>	طلوب إيجاد الجذرين التربيعيين للعدد المركب 108i – 45
50	m=2pq=-108 أن $m=2pq=-108$ إذن العدان p و p مختلفان بالإشارة، من السؤال السابق نجد أن:
50	p = -9, q = 6 (1) $p = 9, q = -9$
Na	بذران المطنوبان هما: $6i$ $+$ 9 $+$ $6i$ $+$ 9 $+$ 9
	$\bar{z} = x - iy$: کن $z = x + iy$

 $z\bar{z} = (x+iy)(x-iy) = x^2 - y^2i^2 = x^2 + y^2 = (\sqrt{x^2+y^2})^2 = |z|^2$

$$|z| = 5\sqrt{5}$$
, $Arg(z) = \tan^{-1}\left(\frac{1}{2}\right)$, $\frac{z}{3+4i} = p+iq$

z = x + iy ليكن

$$x=2y$$
 ويكون, $Arg(z)= an^{-1}\left(rac{1}{2}
ight)$ بما أن $\left(rac{1}{2}
ight)$ الذن يقع العدد المركب ع في الربع الأول، ويكون

$$\rightarrow z = 2y + iy$$

$$|z| = 5\sqrt{5}$$

52
$$(2y)^2 + y^2 = 125 \rightarrow y^2 = 25 \rightarrow y = 5, x = 10$$

$$z = 10 + 5y$$
 اذن،

$$\frac{z}{3+4i} = \frac{10+5i}{3+4i} = \frac{10+5i}{3+4i} \times \frac{3-4i}{3-4i}$$

$$p+iq = \frac{30-40i+15i+20}{9+16} = \frac{50-25i}{25} = 2-i$$

$$p+q=1$$
 : ويكون $p=2$, $q=-1$

$$z^3 - 20z^2 + 164z - 400 = 0$$

بما أن (6i+8) جنر لهذه المعادلة، فإن مرافقه (6i-8) هو أيضًا جنر لهذه المعادلة، نكون المعادلة التربيعية التي جنراها (6i+8)، (6i-8):

$$(8+6i) + (8-6i) = 16$$

 $(8+6i) \times (8-6i) = 64+36 = 100$
 $\Rightarrow z^2 - 16z + 100 = 0$

ثم نقسم كثير الحدود $z^3-20z^2+164z-400$ على $z^3-20z^2+164z-400$ فنجد أن: $z^3-20z^2+164z-400=(z^2-16z+100)(z-4)=0$

$$\rightarrow z = 4, z = 8 \pm 6i$$

z=4, z=8+6i, z=8-6i حلول هذه المعادلة هي: z=4, z=8+6i, z=8-6i المعادلة الجديدة هي: z=4, z=8+6i, z=8-6i الأعداد المعادلة الجديدة هي: z=4, z=8+6i, z=8-6i الأعداد المعادلة الجديدة هي: z=4, z=8+6i, z=8-6i الأعداد المعادلة المعادل

 $z^3 - 20z^2 + 164z - 400 = 0$ إذا عوضنا $z = x^2$ ، تتحول هذه المعادلة إلى

اذن، حلول المعادلة 0=400-400+164 + $164x^2-400$ هي الجذور التربيعية لحلول المعادلة

$$z^3 - 20z^2 + 164z - 400 = 0$$

 $x=\pm\sqrt{8-6i}$ ، $x=\pm\sqrt{8+6i}$ ، $x=\pm2$ إذن، حلول هذه المعادلة هي:

ثجد الجذرين التربيعيين للعدد 8 + 6i

$$\sqrt{8+6i} = h+ik \rightarrow 8+6i = h^2-k^2+2ihk$$

$$\rightarrow 8 = h^2 - k^2 \quad \text{3 } 6 = 2hk$$

$$h=\frac{3}{k}$$

53

$$h^2 - k^2 = 8 \rightarrow h^2 - \frac{9}{k^2} = 8$$

 $\rightarrow h^4 - 8h^2 - 9 = 0$

$$\rightarrow (h^2 + 1)(h^2 - 9) = 0 \rightarrow h = \pm 3 \rightarrow k = \pm 1$$

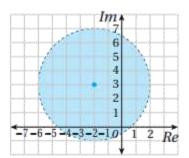
3+i , -3-i هما: 3+6i المركب للعدد المركب 3+6i

3-i , -3+i هما: 8-6i بالمثل نجد أنّ الجذرين التربيعيين للعدد المركب

ويكون للمعادلة $x^6 - 20x^4 + 164x^2 - 400 = 0$ ستة حلول هي:

$$x = 2$$
, $x = -2$, $x = 3 + i$, $x = 3 - i$, $x = -3 + i$, $x = -3 - i$

الدرس الثالث: المحل الهندسي في المستوى المركب



مسألة اليوم أكتب متباينة بدلالة 2، تُحقِّقها جميع الأعداد المُركَّبة التي تقع في المنطقة المُظلَّلة المُبيَّنة في المستوى المُركَّب في الشكل المجاور.

مسألة النوم صفحة 168

المنطقة المظللة تمثل الأعداد المركبة التي تبعد عن العدد 31 + 2 مسافة تقل عن 4 وحدات، فتكون المتباينة المطلوبة هي:

$$|z - (2 + 3i)| < 4$$

أتحقق من فهمي صفحة 169

$$|z+5-4i|=7 \rightarrow |z-(-5+4i)|=7$$

وهذه معادلة دانرة في المستوى المركب مركزها (5,4) وطول نصف قطرها 7

$$|z+5-4i| = 7 \rightarrow |x+iy+5-4i| = 7$$

$$\Rightarrow |(x+5)+(y-4)i| = 7$$

$$\Rightarrow \sqrt{(x+5)^2 + (y-4)^2} = 7$$

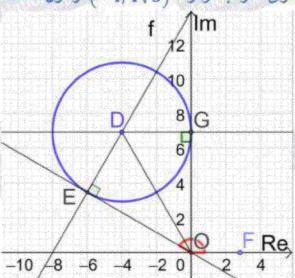
$$\Rightarrow (x+5)^2 + (y-4)^2 = 49$$

وهذه معادلة دائرة مركزها (4.5.4) وطول نصف قطرها 7

أتحقق من فهمي صفحة 171

$$|z+4-4\sqrt{3}i|=4 \rightarrow |z-(-4+4\sqrt{3}i)|=4$$

وهذه معادلة دائرة في المستوى المركب مركزها $(3\sqrt{3})$ وطول نصف قطرها 4



أكبر سعة للعدد المركب z تساوي قياس الزاوية FOE المحصورة بين مماس الدائرة OE والمحور الحقيقي الموجب

مماسا الدائرة OE و OE عموديان على الترتيب على نصفي القطرين DE و DE. المثلثان OGD و OED متطابقان بثلاثة أضلاع، إذن الزاويتان ط60 و EOD متطابقتان

$$\tan \angle GOD = \frac{4}{4\sqrt{3}} = \frac{1}{\sqrt{3}} \rightarrow \angle GOD = \frac{\pi}{6}$$

$$Arg(z) = \frac{\pi}{2} + \frac{\pi}{6} + \frac{\pi}{6} = \frac{5\pi}{6}$$

 $\frac{5\pi}{6}$ القيمة العظمى لسعة الأعداد المركبة Z التي تحقق المعادلة المعطاة هي

$$|z+1| = |z-5i| \rightarrow |z-(-1)| = |z-(5i)|$$

(-1,0),(0,5) هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين

$$|z+1| = |z-5i| \rightarrow |x+iy+1| = |x+iy-5i|$$

$$\rightarrow |(x+1)+iy| = |x+i(y-5)|$$

$$\rightarrow \sqrt{(x+1)^2 + y^2} = \sqrt{x^2 + (y-5)^2}$$

$$\rightarrow (x+1)^2 + y^2 = x^2 + (y-5)^2$$

$$\rightarrow x^2 + 2x + 1 + y^2 = x^2 + y^2 - 10y + 25$$

$$\rightarrow 2x + 10y - 24 = 0$$

x + 5y - 12 = 0 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:

أتحقق من فهمي صفحة 174

a $Arg(z) = \frac{\pi}{3} \rightarrow Arg(z-(0)) = \frac{\pi}{3}$

8 m 6 4 2 /π هذه معادلة شعاع يبدأ بالنقطة (0,0) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{2}$ مع المحور الحقيقي

b $Arg(z-5) = -\frac{2\pi}{3} \rightarrow Arg(z-(5)) = -\frac{2\pi}{3}$

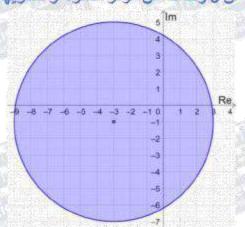
Re, 2π هذه معادلة شعاع يبدأ بالنقطة (5,0) ولا يشملها، ويصنع زاوية قياسها $\frac{2\pi}{2}$ مع المحور الحقيقي

أتحقق من فهمي صفحة 177

 $|z+3+i| \le 6$

المنحنى الحدودي لهذه المتباينة معادلته |z+3+i|=6 وهو دانرة مركزها (-3,-1)، وطول نصف قطرها 6 وحدات.

ويما أنه توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متصلا. أما منطقة المحل الهندسي فهي داخل الدائرة وعلى محيطها وليس خارجها، لأن الأعداد المركبة التي تحقق المتباينة تبعد مسافة تقل عن 6 وحدات عن مركز الدائرة أو تساويها.



|z+3+i| < |z-4|

|z+3+i| = |z-4| المنحنى الحدودي لهذه المتباينة معادلته

وهو المنصف العمودي للقطعة المستقيمة الواصلة بين (-3,-1)و (4,0).

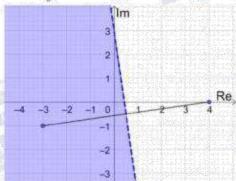
وبما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متقطعا.

نحدد جهة المنحنى الحدودي التي تحقق المتباينة باختيار نقطة الأصل مثلا وتعويضها في المتباينة،

$$|0+3+t| < |0-4| \to \sqrt{10} < 4$$

بما أن نقطة الأصل تحقق المتباينة، فإن منطقة الحلول الممكنة هي المنطقة التي تحوي نقطة الأصل.

b

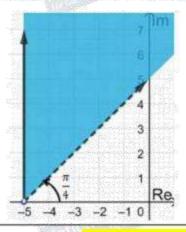


 $\frac{\pi}{4} < \operatorname{Arg}(z+5) \le \frac{\pi}{2}$

يمثل منحنى المعادلة $\frac{\pi}{2}=(z+5)$ Arg شعاعًا (نرسمه متصلاً بسبب وجود مساواة في المتباينة) يبدأ من النقطة (-5,0) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{2}$ مع المحور الحقيقي.

و يمثل منحنى المعادلة $\frac{\pi}{4} = (z+5)$ شعاعا (نرسمه متقطعا بسبب عدم وجود مساواة في المتباينة) يبدأ من النقطة (-5,0) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع المحور الحقيقي. المحل الهندسي للنقاط التي تحقق المتباينة المطلوبة هو الجزء المظلل من المستوى المركب كالآتي:

C



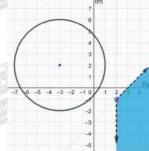
أتحقق من فهمي صفحة 178

 $|z+3-2i| \ge 4$, $-\frac{\pi}{2} < \text{Arg}(z-2+i) < \frac{\pi}{4}$

تمثّل المعادلة 4 = |z + 3 - 2i| دانرة مركزها النقطة (3,2) وطول نصف قطرها 4 وحدات، ويما أنه توجد مساواة في رمز المتباينة فإننا نرسم المنحنى الحدودي متصلا

تمثل المعادلة $\frac{\pi}{4} = (1+2-2+i)$ شعاعًا يبدأ بالنقطة (2,-1) ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم يوازي المحور الحقيقي، وبما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم الشعاع متقطعًا. ثمثل المعادلة $\frac{\pi}{2} = (1+i) > -\frac{\pi}{2}$ شعاعًا يبدأ بالنقطة (2,-1) ويصنع زاوية قياسها $\frac{\pi}{2}$ مع مستقيم يوازي المحور الحقيقي، وبما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم الشعاع متقطعًا.

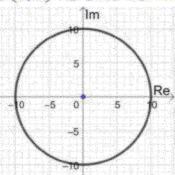
تمثل المتباينة $2 \le |z+3-2i|$ النقاط الواقعة على الدائرة أو خارجها، وتمثل المتباينة $|z+3-2i| \ge 4$ النقاط الواقعة بين الشعاعين. المنطقة التي تحقق المتباينتين هي الجزء المظلل في الرسم أدناه.



أتدرب وأحل المسائل صفحة 178

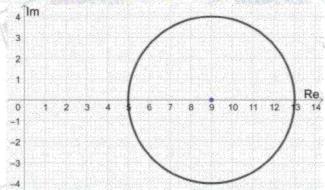
$$|z| = 10 \rightarrow |x + iy| = 10 \rightarrow x^2 + y^2 = 100$$

المحل الهندسي الذي تمثله هذه المعادلة هو دائرة مركزها (0,0) وطول نصف قطرها 10 وحدات



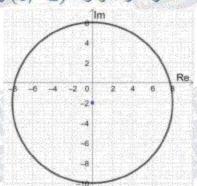
$$|z-9|=4 \rightarrow |(x-9)+iy|=16 \rightarrow (x-9)^2+y^2=16$$

المحل الهندسي الذي تمثله هذه المعادلة هو دانرة مركزها (9,0) وطول نصف قطرها 4 وحدات

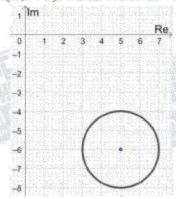


$$|z+2i| = 8 \rightarrow |x+i(y+2)| = 8 \rightarrow x^2 + (y+2)^2 = 64$$

المحل الهندسي الذي تمثله هذه المعادلة هو دائرة مركزها (2-,0) وطول تصف قطرها 8 وحدات

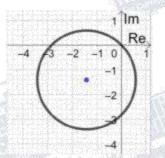


|z-5+6i|=2 $\rightarrow |(x-5)+i(y+6)|=2$ $\rightarrow (x-5)^2+(y+6)^2=4$ المحل الهندسي الذي تمثله هذه المعادلة هو دائرة مركزها (6, -5) وطول نصف قطرها وحدثان

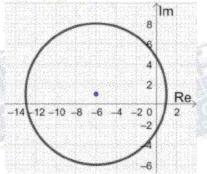


$$|z + \sqrt{2} + i\sqrt{2}| = 2$$
 $\rightarrow |(x + \sqrt{2}) + i(y + \sqrt{2})| = 2$
 $\rightarrow (x + \sqrt{2})^2 + (y + \sqrt{2})^2 = 4$

المحل الهندسي الذي تمثله هذه المعادلة هو دائرة مركزها $(2\sqrt{2}, -\sqrt{2})$ وطول نصف قطرها وحدثان



 $|z+6-i|=7 \rightarrow |(x+6)+i(y-1)|=7 \rightarrow (x+6)^2+(y-1)^2=49$ المحل الهندسي الذي تمثله هذه المعادلة هو دانرة مركزها (6,1) وطول نصف قطرها 7 وحدات



6

$$|z-5| = |z-3i| \rightarrow |z-(5)| = |z-(3i)|$$

هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين (5,0), (0,3)

$$|z-5| = |z-3i| \rightarrow |(x-5)+iy| = |x+i(y-3)|$$

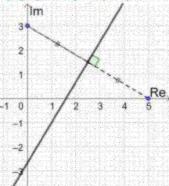
$$\to \sqrt{(x-5)^2 + y^2} = \sqrt{x^2 + (y-3)^2}$$

$$\rightarrow (x-5)^2 + y^2 = x^2 + (y-3)^2$$

$$\rightarrow x^2 - 10x + 25 + y^2 = x^2 + y^2 - 6y + 9$$

$$\rightarrow 10x - 6y - 16 = 0$$

5x - 3y - 8 = 0 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:



$$|z+3i| = |z-7i| \rightarrow |z-(-3i)| = |z-(7i)|$$

(0, -3), (0, 7) هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين

$$|z+3i| = |z-7i| \rightarrow |x+i(y+3)| = |x+i(y-7)|$$

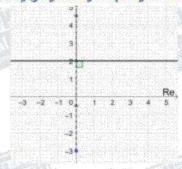
$$\rightarrow \sqrt{x^2 + (y+3)^2} = \sqrt{x^2 + (y-7)^2}$$

$$\rightarrow x^2 + (y+3)^2 = x^2 + (y-7)^2$$

$$\rightarrow x^2 + y^2 + 6y + 9 = x^2 + y^2 - 14y + 49$$

$$\rightarrow 20y - 40 = 0$$

y=2 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:



8

$$|z+5+2i| = |z-7| \rightarrow |z-(-5-2i)| = |z-(7)|$$

هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين (7,0),(7,0)

$$|z+5+2i| = |z-7| \rightarrow |(x+5)+i(y+2)| = |(x-7)+iy|$$

$$\rightarrow \sqrt{(x+5)^2 + (y+2)^2} = \sqrt{(x-7)^2 + y^2}$$

$$\rightarrow (x+5)^2 + (y+2)^2 = (x-7)^2 + y^2$$

$$\rightarrow x^2 + 10x + 25 + y^2 + 4y + 4 = x^2 - 14x + 49 + y^2$$

$$\rightarrow 24x + 4y - 20 = 0$$

6x + y - 5 = 0 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:

$$|z-3| = |z-2-i| \rightarrow |z-(3)| = |z-(2+i)|$$

هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين (2,1) (3,0)

$$|z-3| = |z-2-i| \rightarrow |(x-3)+iy| = |(x-2)+i(y-1)|$$

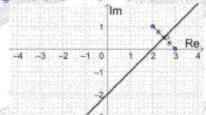
$$\rightarrow \sqrt{(x-3)^2 + y^2} = \sqrt{(x-2)^2 + (y-1)^2}$$

$$\rightarrow (x-3)^2 + y^2 = (x-2)^2 + (y-1)^2$$

$$\rightarrow x^2 - 6x + 9 + y^2 = x^2 - 4x + 4 + y^2 - 2y + 1$$

$$\rightarrow 2x - 2y - 4 = 0$$

x-y-2=0 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:



9

$$\frac{|z+6-i|}{|z-10-5i|} = 1 \quad \Rightarrow |z+6-i| = |z-10-5i|$$

$$\rightarrow |z - (-6 + i)| = |z - (10 + 5i)|$$

هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين (10,5) (-6,1)

$$|z+6-i| = |z-10-5i| \rightarrow |(x+6)-i(y-1)| = |(x-10)+i(y-5)|$$

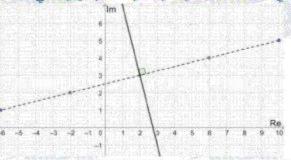
$$\rightarrow \sqrt{(x+6)^2 + (y-1)^2} = \sqrt{(x-10)^2 + (y-5)^2}$$

$$\rightarrow (x+6)^2 + (y-1)^2 = (x-10)^2 + (y-5)^2$$

$$\rightarrow x^2 + 12x + 36 + y^2 - 2y + 1 = x^2 - 20x + 100 + y^2 - 10y + 25$$

$$\rightarrow 32x + 8y - 88 = 0$$

4x + y - 11 = 0 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:



$$|z+7+2i| = |z-4-3i| \rightarrow |z-(-7-2i)| = |z-(4+3i)|$$

(-7, -2), (4, 3) هذه هي معادلة المنصف العمودي للقطعة المستقيمة الواصلة بين النقطتين

$$|z+7+2i| = |z-4-3i| \rightarrow |(x+7)+i(y+2)| = |(x-4)+i(y-3)|$$

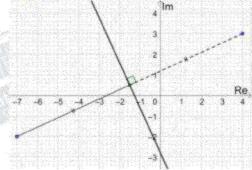
$$\rightarrow \sqrt{(x+7)^2 + (y+2)^2} = \sqrt{(x-4)^2 + (y-3)^2}$$

$$\rightarrow (x+7)^2 + (y+2)^2 = (x-4)^2 + (y-3)^2$$

$$\rightarrow x^2 + 14x + 49 + y^2 + 4y + 4 = x^2 - 8x + 16 + y^2 - 6y + 9$$

$$\rightarrow 22x + 10y + 28 = 0$$

11x + 5y + 14 = 0 إذن معادلة المنصف العمودي للقطعة المستقيمة بالصيغة الديكارتية هي:

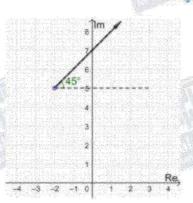


12

 $\operatorname{Arg}(z+2-5i) = \frac{\pi}{4} \to \operatorname{Arg}(z-(2+5i)) = \frac{\pi}{4}$

المحل الهندسي لهذه المعادلة هو شعاع ينطلق من النقطة (2,5) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم يوازي المحور الحقيقي.

13

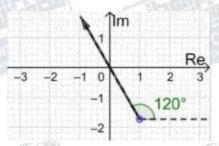


$$\operatorname{Arg}(z-1+i\sqrt{3}) = \frac{2\pi}{3} \to \operatorname{Arg}\left(z-\left(1-i\sqrt{3}\right)\right) = \frac{2\pi}{3}$$

المحل الهندسي لهذه المعادلة هو شعاع ينطلق من النقطة $(3,-\sqrt{3})$ ولا يشملها، ويصنع زاوية قياسها

مع مستقيم يوازي المحور الحقيقي. $\frac{2\pi}{3}$

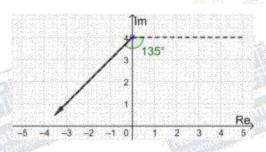
14



$$Arg(z-4i) = -\frac{3\pi}{4} \rightarrow Arg(z-(4i)) = -\frac{3\pi}{4}$$

المحل الهندسي لهذه المعادلة هو شعاع ينطلق من النقطة (0,4) ولا يشملها، ويصنع زاوية قياسها

 $\frac{3\pi}{4}$ مع مستقيم يوازي المحور الحقيقي.



|z-2| < |z+2|

|z-2|=|z+2| المنحنى الحدودي لهذه المتباينة معادلته

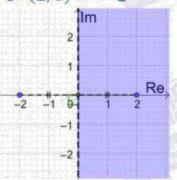
وهو المنصف العمودي للقطعة المستقيمة الواصلة بين (-2,0)و (2,0).

وبما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متقطعًا.

تحدد جهة المنحنى الحدودي التي تحقق المتباينة باختيار 1 + 1 = 2 مثلاً وتعويضه في المتباينة،

$$|1+i-2|<|1+i+2| \to |-1+i|<|3+i| \to \sqrt{2}<\sqrt{10}$$

z=1+i بما أن z=1+i حقق المتباينة، فإن منطقة الحلول الممكنة هي المنطقة التي تحوي z=1+i (أي نختار الجهة التي يكون فيها بعد النقاط عن النقطة (2,0) أقل من بعدها عن النقطة (-2,0)



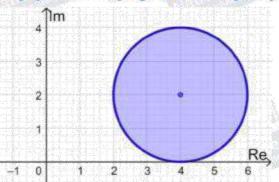
$$|z-4-2i| \le 2 \rightarrow |z-(4+2i)| \le 2$$

&

المنحنى الحدودي لهذه المتباينة معادلته |z-4-2i|=2 ، وهو دائرة مركزها (4,2) وطول تصف قطرها وحدتان.

ويما أنه توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متصلا. أما منطقة المحل الهندسي فهي داخل الدائرة وعلى محيطها وليس خارجها، لأن الأعداد المركبة التي تحقق المتباينة تبعد عن مركز الدائرة مسافة تقل عن طول نصف القطر أو تساويها.

17



|z-4| > |z-6|

18

19

المنحنى الحدودي لهذه المتباينة معادلته |z-4|=|z-4|

وهو المنصف العمودي للقطعة المستقيمة الواصلة بين (6,0)و (4,0).

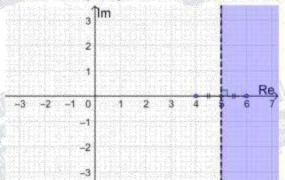
ويما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متقطعا.

تحدد جهة المنحنى الحدودي التي تحقق المتباينة باختيار z = 0 مثلاً وتعويضه في المتباينة،

$$|0-4| > |0-6| \to 2 > \sqrt{6}$$
 *

بما أنّ العدد لا يحقق المتباينة، فإن منطقة الحلول الممكنة هي المنطقة التي لا تحوي z=0

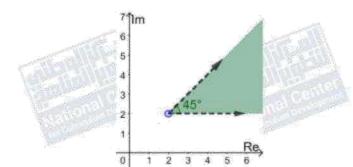
(أي تختار الجهة التي يكون فيها بعد النقاط عن النقطة (4,0) أكبر من بعدها عن النقطة (6,0))



$$0<\operatorname{Arg}(z-2-2i)<\frac{\pi}{4}$$

يمثل منحنى المعادلة $\frac{\pi}{4} = (2-2i) = 4$ شعاعا (نرسمه متقطعا بسبب عدم وجود مساواة في المتباينة) يبدأ من النقطة (2,2) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم يوازي المحور الحقيقي. ويمثل منحنى المعادلة (2,2) (2,2) (2,2) شعاعا (نرسمه متقطعا بسبب عدم وجود مساواة في المتباينة) يبدأ من النقطة (2,2) ولا يشملها، ويوازي المحور الحقيقي.

المحل الهندسي للنقاط التي تحقق المتباينة المطلوبة هو الجزء من المستوى المركب المحصور بين هذين الشعاعين.

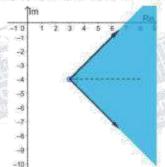


 $-\frac{\pi}{4} \leq \operatorname{Arg}(z-3+4i) \leq \frac{\pi}{4}$

يمثل منحنى المعادلة $\frac{\pi}{4} = (2 - 3 + 4i) = \pi$ شعاعا (نرسمه متصلا بسبب وجود مساواة في المتباينة) يبدأ من النقطة (3, -4) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم مواز للمحور الحقيقى.

و يمثل منحنى المعادلة $\frac{\pi}{4} = -\frac{\pi}{4}$ Arg $(z-3+4i) = -\frac{\pi}{4}$ المتباينة) يبدأ من النقطة (3,-4) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم مواز للمحور الحقيقي.

المحل الهندسي للنقاط التي تحقق المتباينة المطلوبة هو الجزء من المستوى المركب كما في الشكل:



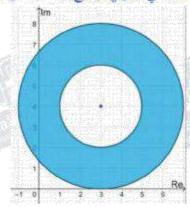
 $2 \le |z-3-4i| \le 4 \rightarrow 2 \le |z-(3+4i)| \le 4$

يمثل منحنى المعادلة z = |z - 3 + 4i| دائرة مركزها z = |z - 3 + 4i| قطرها وحدتان، ويما آنه توجد مساواة في رمز المتباينة، فاتنا نرمىم المنحنى الحدودي متصلا.

ويمثل منحنى المعادلة 4 = |z-3+4i| دائرة مركزها (3,4) وطول نصف قطرها 4 ويمثل منحنى المعادلة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متصلا.

أما منطقة المحل الهندسي فهي المنطقة التي تحوى جميع الأعداد الواقعة على الدائرتين أو بينهما.

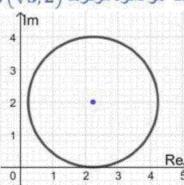
21



 $|z-\sqrt{5}-2i|=2 \rightarrow |z-(\sqrt{5}+2i)|=2$

المحل الهندسي الذي تمثله هذه المعادلة هو دائرة مركزها (5,2) وطول نصف قطرها وحدتان

22



Re

23

أكبر سعة للعدد المركب z تساوي قياس الزاوية LOB المحصورة بين مماس الدائرة OB والمحور الحقيقى الموجب

مماسا الدائرة OB و OB عموديان على الترتيب على نصفى القطرين CB و CB، المثلثان OBC و OBC متطابقان بثلاثة أضلاع، إذن الزاويتان LOC و BOC متطابقتان

 $\tan \angle \theta = \frac{2}{\sqrt{5}} \rightarrow \theta = \tan^{-1} \frac{2}{\sqrt{5}} \rightarrow \angle JOB = 2 \times \tan^{-1} \frac{2}{\sqrt{5}} \approx 1.46$

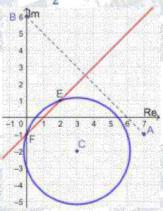
القيمة العظمى لسعة الأعداد المركبة z التي تحقق المعادلة المعطاة هي 46.1

المحل الهندسي الذي تمثله المعادلة $\sqrt{10}=\sqrt{10}=|z-3+2i|$ هو دائرة مركزها (3,-2) وطول نصف قطرها $\sqrt{10}$ وحداث، ومعادلتها الديكارتية هي: $10=|z-3|^2+(y+2)^2+(y+2)|$ المحل الهندسي الذي تمثله المعادلة |z-6i|=|z-7+i| هو المنصف العمودي للقطعة المستقيمة التي طرفاها (0,6) و (0,-1) ، نستطيع إيجاد معادلته الديكارتية عن طريق ميل العمودي z=1 . z=1

 $m=1
ightarrow y-rac{5}{2}=x-rac{7}{2}$ ونقطة منتصف القطعة المستقيمة: y=x-1

24

25



لإيجاد الأعداد المركبة التي تحقق المعادلتين معًا، نجد نقاط تقاطع المنحنيين:

ين
$$y = x - 1$$
 و $y = x - 1$ بالتعويض:

$$(x-3)^2 + (y+2)^2 = 10 \rightarrow (x-3)^2 + (x-1+2)^2 = 10$$

$$\rightarrow 2x^2 - 4x = 0 \rightarrow 2x(x - 2) = 0$$

$$\rightarrow x = 0, x = 2 \rightarrow y = -1 \text{ or } y = 1$$

 $z_1 = -i, z_2 = 2 + i$ العددان المركبان اللذان يحققان المعادلتين معا هما:

$$|z-3| = |z+2i| \rightarrow |(x-3)+iy| = |x+i(y+2)|$$
$$\rightarrow (x-3)^2 + y^2 = x^2 + (y+2)^2$$
$$\rightarrow -6x + 9 = 4y + 4$$

$$|z+3-i| = |z-1+5i| \rightarrow |(x+3)+i(y-1)| = |(x-1)+i(y+5)|$$

$$\rightarrow (x+3)^2 + (y-1)^2 = (x-1)^2 + (y+5)^2$$

$$\rightarrow x^2 + 6x + 9 + y^2 - 2y + 1 = x^2 - 2x + 1 + y^2 + 10y + 25$$

$$\rightarrow 8x - 12y - 16 = 0$$

$$\rightarrow 2x - 3y = 4 \dots \dots \dots \dots (2)$$

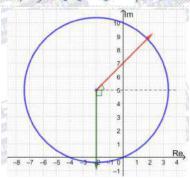
$$x = \frac{31}{26}$$
 و $y = -\frac{7}{13}$ نجد: (2) و (1) بحل المعادلتين

 $z = \frac{31}{26} - \frac{7}{13}i$ ويكون العدد المركب الذي يحقق كلًا من المعادلتين هو:

يمثل منحنى المعادلة $\frac{\pi}{4}=(z+2-5i)$ همثل منحنى المعادلة (z+2-5i) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم يوازي المحور الحقيقي

و يمثل منحنى المعادلة $\frac{\pi}{2} = -2$ $Arg(z+2-5i) = -\frac{\pi}{2}$ ويمثل منحنى المعادلة $\frac{\pi}{2}$ ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم يوازي المحور الحقيقي

و يمثل منعنى المعادلة $\sqrt{29} = \sqrt{2} = |z+2-5i|$ دائرة مركزها (-2,5) وطول نصف قطرها $\sqrt{29}$



1)
$$|z-3| > |z+2i|$$

|z-3|=|z+2i| المنحنى الحدودي لهذه المتباينة معادلته

وهو المنصف العمودي للقطعة المستقيمة التي طرفاها (2, -2)و (3,0).

وبما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متقطعًا.

نحدد جهة المنحنى الحدودي التي تحقق المتباينة باختيار 2 = 2 مثلاً وتعويضه في المتباينة،

 $|0-3| > |0+2i| \to 3 > 2$

بما أن العدد0 يحقق المتباينة، فإن منطقة الحلول الممكنة هي المنطقة التي تحوي z=0 (نقطة الأصل)

2) |z+3-i| < |z-1+5i|

|z+3-i|=|z-1+5i| المنحنى الحدودي لهذه المتبايئة معادلته

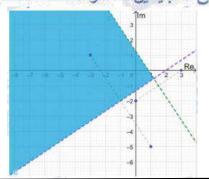
وهو المنصف العمودي للقطعة المستقيمة التي طرفاها (5, -1)و (3, 1).

وبما أنه لا توجد مساواة في رمز المتبايلة، فإننا نرسم المنحنى الحدودي متقطعا.

تحدد جهة المنحنى الحدودي التي تحقق المتباينة باختيار 2 = 2 مثلاً وتعويضه في المتباينة،

 $|0+3-i| < |0-1+5i| \rightarrow \sqrt{10} < \sqrt{26}$

بما أن العدد0 يحقق المتباينة، فإن منطقة الحلول الممكنة هي المنطقة التي تحوي z = 2(نقطة الأصل) المحل الهندسي للنقاط التي تحقق المتباينتين معا هو المنطقة المظللة في الشكل أدناه:



27

1) $-\frac{\pi}{2} < \text{Arg}(z+2-5i) < \frac{\pi}{4}$

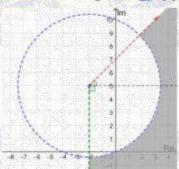
يمثل منحنى المعادلة $\frac{\pi}{4} = (2-5i) = 4$ شعاعًا (نرسمه متقطعًا بسبب عدم وجود مساواة في المتباينة) يبدأ من النقطة (2,5) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم مواز للمحور الحقيقي.

و يمثل منحنى المعادلة $\frac{\pi}{2} = -i$ $Arg(z+2-5i) = -\frac{\pi}{2}$ مساواة في المتباينة) يبدأ من النقطة (-2,5) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{2}$ مع مستقيم مواز للمحور الحقيقى.

28 | 2) $|z+2-5i| > \sqrt{29}$

و يمثل منحنى المعادلة $\sqrt{29} = |z+2-5i| = |z+2-5i|$ دانرة مركزها (-2,5) وطول نصف قطرها $\sqrt{29}$ نرسمها متقطعة بسبب عدم وجود مساواة في المتباينة

المحل الهندسي للنقاط التي تحقق المتباينتين معا هو المنطقة المظللة في الشكل أدناه:



1) $-\frac{\pi}{4} \le \operatorname{Arg}(z-2i) \le \frac{\pi}{3}$

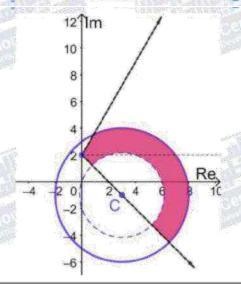
يمثل منحنى المعادلة $\frac{\pi}{4}=(z-2i)$ Arg(z-2i) شعاعًا (نرسمه متصلاً بسبب وجود مساواة في المتباينة) يبدأ من النقطة (0,2) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم مواز للمحور الحقيقي. و يمثل منحنى المعادلة $\frac{\pi}{3}=(z-2i)$ شعاعًا (نرسمه متصلاً بسبب وجود مساواة في المتباينة) يبدأ من النقطة (0,2) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{2}$ مع مستقيم مواز للمحور الحقيقي.

2) $2 < |z-3+i| \le 5$

ويمثل منحنى المعادلة z = |z - 3 + i| = 3 دائرة مركزها z = 3 وطول نصف قطرها 5 نرسمها متصلة بسبب وجود مساواة في المتباينة

ويمثل منحنى المعادلة |z-3+i|=2 دانرة مركزها |3,-1| وطول نصف قطرها |z-3+i|=2 نرسمها متقطعة بسبب عدم وجود مساواة في المتباينة

المحل الهندسي للنقاط التي تحقق المتباينتين معًا هو المنطقة المظللة في الشكل أدناه:



|z-(1+i)|=3

29

31

نبدأ بالتحقق من أن المستقيم المرسوم هو فعلا العمود المنصف القطعة المستقيمة التي طرفاها (3,2) و (-1,0):

ميل القطعة المستقيمة يساوي $\frac{1}{2}$ وميل المستقيم يساوي 2— فهما متعامدان، معادلة المستقيم هي 2x = 3 و واقعة على معادلة المستقيم هي 2x = 3 و واقعة على المستقيم لأن احداثيبها يحققان معادلته،

إذن المستقيم المرسوم هو المنصف العمودي للقطعة، ومعادلته:

|z-(3+2i)| = |z-(-1)|

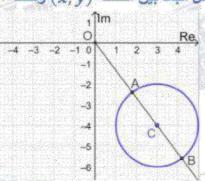
32	$Arg(z+1-2i)=-\frac{3\pi}{4}$		NP (C. S.
33	$r = \sqrt{(4-0)^2 + (1-7)^2} = \sqrt{52}$ $ z - (4+i) \ge \sqrt{52}$		
34	-1 الحقيقي هو $-rac{\pi}{4}$ لأن ميل الشعاع $-rac{\pi}{4} \leq { m Arg}(z+2-i) < 0$	والمستقيم الموازي للمحور	قياس الزاوية بين الشعاع
35	$ z+2+i \le 3$ $ z+6 \ge z+4i $		
	$ z - a = z + a(2 + i) \rightarrow x - a + iy $ $\rightarrow (x - a)^{2} + y^{2} = (x + 2a)^{2}$ $\rightarrow y = -3x - 2a \dots \dots \dots$ $ z - a = 2a \rightarrow (x - a) + iy = 2a$ $\rightarrow (x - a)^{2} + y^{2} = 4a^{2} \dots$ $(x - a)^{2} + (-3x - 2a)^{2} = 4a^{2}$ $x^{2} - 2ax + a^{2} + 9x^{2} + 12ax + a^{2}$	$(y+a)^2 + (y+a)^2$	(1)
36	$10x^2 + 10ax + 3ax + 3$		a√15
	$x = -\frac{a}{2} \pm \frac{a\sqrt{15}}{10}$ $y = -3\left(-\frac{a}{2} \pm \frac{a\sqrt{15}}{10}\right) - 2a = -\frac{a}{2} \pm \frac{3a\sqrt{15}}{10}$ $-\frac{a}{2} + \frac{a\sqrt{15}}{10} - \left(\frac{a}{2} \pm \frac{3a\sqrt{15}}{10}\right)i_{r} - \frac{a}{2} - \frac{a\sqrt{15}}{10} - \frac{a}{2}$	a√15 10 ين المطلوبين هما:	إذًا كان $lpha eq 0$ قان العدد

 $|z-3+4i|=2 \rightarrow |z-(3-4i)|=2$

z يقع على الدائرة التي مركزها (4- ,3) وطول نصف قطرها 2

نفرض z = x + iy فإن:

يساوي $\sqrt{x^2+y^2}$ وهو يمثل البعد بين النقطة (x,y) ونقطة الأصل في المستوى الديكارتي |z|



37

40

 $0C = \sqrt{9 + 16} = 5$

من الشكل أعلاه نجد أن:

|z| = OC - r = 5 - 2 = 3 اقل قيمة لـ |z| هي: |z| = 0C + r = 5 + 2 = 7 اکبر قيمة لـ |z| هي: |z| = 0C + r = 5 + 2 = 7

$$z = 5 + 2i \rightarrow \overline{z} = 5 - 2i$$
38 z 5 + 2i 5 + 2i 25

$$\frac{z}{\bar{z}} = \frac{5+2i}{5-2i} \times \frac{5+2i}{5+2i} = \frac{25+20i-4}{25+4} = \frac{21+20i}{29} = \frac{1}{29}(21+20i)$$

$$Arg(z) = \tan^{-1}\frac{2}{5}$$

$$Arg(\bar{z}) = -\tan^{-1}\frac{2}{5}$$

$$39 \quad Arg\left(\frac{z}{\overline{z}}\right) = \tan^{-1}\frac{20}{21}$$

$$Arg\left(\frac{z}{\bar{z}}\right) = Arg(z) - Arg(\bar{z}) \to \tan^{-1}\frac{20}{21} = \tan^{-1}\frac{2}{5} - (-\tan^{-1}\frac{2}{5})$$

 $\to \tan^{-1}\frac{20}{21} = 2\tan^{-1}\frac{2}{5}$

$$|z-6| = 2|z+6-9i| \to |x-6+iy| = 2|(x+6)+i(y-9)|$$

 $\to (x-6)^2+y^2=4((x+6)^2+(y-9)^2)$

$$\Rightarrow (x-6) + y = 4((x+6) + (y-9))$$
$$\Rightarrow x^2 - 12x + 36 + y^2 = 4(x^2 + 12x + 36 + y^2 - 18y + 81)$$

$$\Rightarrow x^2 + y^2 + 20x - 24y + 144 = 0$$

41

المحل الهندسي لهذه المعادلة هو شعاع ينطلق من النقطة (2, -3) ولا يشملها، ويصنع زاوية قياسها

له مع مستقيم يوازي المحور الحقيقي، و هو الممثل بالشكل $\frac{\pi}{8}$

أما الشكل و فنقطة بداية الشعاع ليست صحيحة

والشكل c فنقطة بداية الشعاع مشمولة، وهو ليس صحيدا

والشكل $\frac{\pi}{2}$ والشكل $\frac{\pi}{2}$ وهو مخالف للمبعة المعطاة بالمعادلة.

اختبار نهاية الوحدة الثالثة

1	c a
2	b
3	c certification of the certifi
4	b
5	a
6	d
	$\sqrt{45 - 28i} = x + iy \to 45 - 28i = x^2 - y^2 + 2ixy$
	$-3x^2 - y^2 = 45$, $2xy = -28 \rightarrow y = -\frac{14}{x}$
	$\rightarrow x^2 - \frac{196}{x^2} = 45$
7	$- x^4 - 45x^2 - 196 = 0$
	-2 + 2i الجذران التربيعيان للعدد $-28i - 45 - 28i$ هما: $-7 + 2i$ و $-7 + 2i$
107	$ w = \sqrt{\left(-\frac{\sqrt{3}}{3}\right)^2 + \left(-\frac{1}{2}\right)^2} = \sqrt{\frac{7}{12}}$
8	$\left\langle \frac{1}{2} \right\rangle \left\langle \frac{1}{2} \right\rangle$
	$Arg(\omega) = -\left(\pi - \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{3}}\right)\right) = -\left(\pi - \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)\right) = -2.28$
9	$z + w = a - 8 + 10i \rightarrow z + \omega = \sqrt{(a - 8)^2 + 100} = 26$ $\rightarrow (a - 8)^2 + 100 = 676 \rightarrow (a - 8)^2 = 576 \rightarrow a - 8 = -24 \rightarrow a = -16$

10 $\omega = \frac{14 - 31i}{3 - 2i} \times \frac{3 + 2i}{3 + 2i} = \frac{104 - 65i}{9 + 4} = 8 - 5i$

$$(8-5i)^2 + c(8-5i) + d = 0 \rightarrow 64 - 80i - 25 + 8c - 5ci + d = 0$$

$$\rightarrow 39 + d + 8c - i(80 + 5c) = 0$$

$$\rightarrow 39 + d + 8c = 0,80 + 5c = 0$$

$$\rightarrow c = -16, d = 89$$

11

حل آخر:

$$\omega = 8 - 5i \rightarrow \overline{\omega} = 8 + 5i$$

$$\rightarrow c = -(\omega + \overline{\omega}) = -16$$

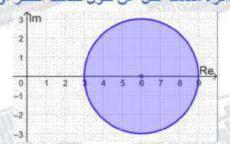
$$\rightarrow d = \omega \times \overline{\omega} = 64 + 25 = 89$$

$$|z-6| \leq 3$$

المنحنى الحدودي لهذه المتباينة معادلته |z-6|=3|، وهو دائرة مركزها (6,0) وطول نصف قطرها |z-6|=3|

وبما أنه توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متصلا. أما منطقة المحل الهندسي فهي داخل الدائرة وعلى محيطها وليس خارجها، لأن الأعداد المركبة التي تحقق المتباينة تبعد عن مركز الدائرة مسافة تقل عن طول نصف القطر أو تساويها.

12



$$\frac{\pi}{4} \le \operatorname{Arg}(z-2) \le \frac{2\pi}{3}$$

يمثل منحنى المعادلة $\frac{\pi}{4}=(z-2)$ شعاعا (نرسمه متصلا بسبب وجود المساواة في المتباينة) يبدأ من النقطة (z,0) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع المحور الحقيقي

ويمثل منحنى المعادلة $\frac{2\pi}{3} = \frac{2\pi}{3}$ شعاعًا (نرسمه متصلا بسبب وجود المساواة في المتباينة)

يبدأ من النقطة (2,0) ولا يشملها، ويصنع زاوية قياسها $\frac{2\pi}{3}$ مع المحور الحقيقي المحل الهندسي للنقاط التي تحقق المتباينة هو المنطقة المظللة في الشكل أدناه:

13

3 2 1 -10 1 2 3 4 5 6 7 |z+1+i| > |z-3-3i|

المنحنى الحدودي لهذه المتباينة معادلته |z+1+i|=|z-3-3i| وهو المنصف العمودي للقطعة المستقيمة التي طرفاها (3,3)و (-1,-1).

وبما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم المنحني الحدودي متقطعا.

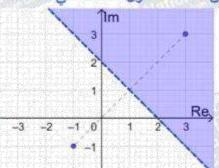
تحدد جهة المنحنى الحدودي التي تحقق المتباينة باختيار z = 0 مثلاً وتعويضه في المتباينة،

 $|0+1+i| > |0-3-3i| \to \sqrt{2} > \sqrt{18}$

z=0 بما أن العدد لا يحقق المتباينة، فإن منطقة الحلول الممكنة هي المنطقة التي لا تحوي

14

16



$$NO = \sqrt{16 + 49} = \sqrt{65}$$

15
$$MO = \sqrt{1+64} = \sqrt{65}$$

إذن المثلث OMN متطابق الضلعين

باستخدام قانون جيوب التمام في المثلث OMN:

 $(NM)^2 = (NO)^2 + (MO)^2 - 2(NO)(MO)\cos \angle MON$

$$\rightarrow \cos \angle MON = -\frac{234 - 130}{130} = -\frac{4}{5}$$

17
$$A = \frac{1}{2}(NO)(MO) \sin \angle MON = \frac{1}{2} \times 65 \times \frac{3}{5} = \frac{39}{2}$$

|z-8|>|z+2i|

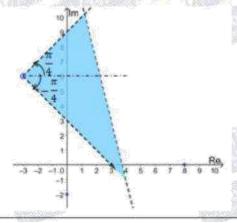
18

المنحنى الحدودي لهذه المتباينة معادلته |z-3|=|z-3| وهو المنصف العمودي للقطعة المستقيمة التي طرفاها (0,-2)و (8,0). ويما أنه لا توجد مساواة في رمز المتباينة، فإننا نرسم المنحنى الحدودي متقطعًا.

$$-\frac{\pi}{4} < \operatorname{Arg}(z+3-6i) < \frac{\pi}{4}$$

يمثل منحنى المعادلة $\frac{\pi}{4}=(6i)=Arg(z+3-6i)$ شعاعًا (نرسمه متقطعًا بسبب عدم وجود مساواة في المتباينة) يبدأ من النقطة (-3,6) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم مواز للمحور الحقيقى

ويمثل منحنى المعادلة $\frac{2\pi}{3}=(3-6i)=Arg(z+3-6i)$ شعاعًا (نرسمه متقطعًا بسبب عدم وجود مساواة في المتباينة) يبدأ من النقطة (-3,6) ولا يشملها، ويصنع زاوية قياسها $\frac{\pi}{4}$ مع مستقيم مواز للمحور الحقيقي. المحل الهندسي للنقاط التي تحقق المتباينتين هو المنطقة المظللة في الشكل أدناه:



$r = |4 + 2i| = \sqrt{16 + 4} = \sqrt{20} = |z_1| = |z_2| = |z_3|$

إذا وقعت رؤوس مثلث متطابق الأضلاع على دانرة، فإن قياس الزاوية المركزية التي ضلعاها يمران برأسين من رؤوس هذا

 $\frac{2\pi}{3}$ المثلث يساوي

نفرض z_1, z_2, z_3 الأعداد المركبة التي تمثّل هذه الرؤوس، حيث $z_1 = 4 + 2i$

فإن العدد 22 يقع في الربع الثاني، والعدد 23 يقع في الربع الثالث.

$$Arg(z_2) = Arg(z_1) + \frac{2\pi}{3}, Arg(z_2) = Arg(z_1) - \frac{2\pi}{3}$$

بما أن $z_1 = |z_1|$ هو ناتج ضرب $z_1 = |z_2|$ ، و $|z_2| = |z_2|$ ، فإن $|z_1| = |z_2|$ في العدد

المركب الذي مقيامية 1، و منعته $\frac{2\pi}{3}$ و هو:

$$z = 1\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$z_2 = (4+2i)\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right) = -2+2i\sqrt{3}-i-2\sqrt{3}$$

$$= -(2+2\sqrt{3}) + (2\sqrt{3}-1)i$$

يما أن
$$z_3$$
 هو ناتج قسمة z_3 على العدد $|z_1|=|z_3|$ ، و $|z_3|=|z_3|$ على العدد

$$-\frac{1}{2}+i\frac{\sqrt{3}}{2}$$

$$z_{3} = \frac{4+2i}{-\frac{1}{2}+i\frac{\sqrt{3}}{2}} = \frac{4+2i}{-\frac{1}{2}+i\frac{\sqrt{3}}{2}} \times \frac{-\frac{1}{2}-i\frac{\sqrt{3}}{2}}{-\frac{1}{2}-i\frac{\sqrt{3}}{2}} = \frac{-2-2i\sqrt{3}-i+\sqrt{3}}{(-\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$$
$$= \frac{-2-2i\sqrt{3}-i+\sqrt{3}}{1} = -2+\sqrt{3}-(2\sqrt{3}+1)i$$

 $z^4 - 6z^3 + 14z^2 - 64z + 680 = 0$

بما أن العدد 4i+2- هو حل لهذه المعادلة، إذن مرافقه 4i-2-2 يكون حلّا أيضًا لها ويكون ناتج ضريهما أحد عوامل كثير الحدود المرتبط بهذه المعادلة.

$$(z-(-2+4i))(z-(-2-4i))=z^2+4z+20$$

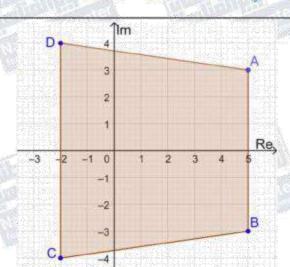
نقسم
$$z^2 + 4z + 20$$
 على $z^4 - 6z^3 + 14z^2 - 64z + 680$ فنجد ان:

$$z^4 - 6z^3 + 14z^2 - 64z + 680 = (z^2 + 4z + 20)(z^2 - 10z + 34) = 0$$

لإيجاد جذور المعادلة $2^2 - 10z + 34 = 0$ نستخدم القانون العام لحل المعادلة التربيعية:

$$z = \frac{10 \pm \sqrt{-36}}{2} = \frac{10 \pm 6i}{2} = 5 \pm 3i$$

5+3i, 5-3i, -2-4i هي: المطلوبة هي المطلوبة المطلوبة



21

23

20

الرباعي ABCD هو شبه منحرف، مساحته بالوحدات المربعة تساوي:

$$A = \frac{1}{2}(7)(6+8) = 49$$

$$22 \quad 0 \leq \operatorname{Arg}(z-3i) \leq \frac{\pi}{3}$$

$$z^2 + 2z + 10 = 0$$

$$\Delta = 4 - 40 = -36$$

مميز المعادلة التربيعية سالب، إذن لهذه المعادلة جذران مركبان مترافقان، وحسب النظرية فإن العددان المركبان المترافقان لهما المقياس نفسه

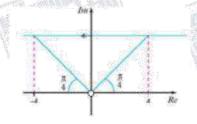
$$z_1 = \frac{-2 + \sqrt{-36}}{2} = -1 + 3i \rightarrow \text{Arg}(z_1) = \pi - \tan^{-1} 3$$

$$z_2 = \frac{-2 - \sqrt{-36}}{2} = -1 - 3i \rightarrow \text{Arg}(z_2) = -(\pi - \tan^{-1} 3)$$

25
$$w = \frac{22+4i}{(2-i)^2} = \frac{22+4i}{3-4i} \times \frac{3+4i}{3+4i} = \frac{50+100i}{25} = 2+4i$$

$$\frac{\pi}{4} \le \operatorname{Arg}(w+p) \le \frac{3\pi}{4}$$

$$26 \rightarrow \frac{\pi}{4} \leq \operatorname{Arg}(2+p+4i) \leq \frac{3\pi}{4}$$



نفرض أن العدد p+4i هو a، فيكون التمثيل البياني للمتباينة a>2+p+4i كما في الشكل المجاور والأعداد التي تحقق هذه المتباينة هي الأعداد الواقعة بين الشعاعين المارين بنقطة الأصل ونلاحظ من الرسم أن الجزء الحقيقي للعدد a>1 الذي يحقق هذه المتباينة ينحصر بين a>1 و4

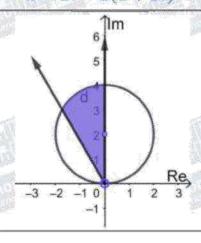
$$-4 \le 2 + p \le 4 \rightarrow -6 \le p \le 2$$
 (ذن)

$$u+2v=2i\ldots\ldots\ldots(1)$$

$$iu + v = 3 \dots \dots \dots \dots \dots \dots (2)$$

$$i \times (2) + (1)$$
: $v(2+i) = 5i$ $\rightarrow v = \frac{5i}{2+i} \times \frac{2-i}{2-i} = \frac{10i+5}{4+1} = 1+2i$
 $\rightarrow u = 2i - 2(1+2i) = -2-2i$

28



المتباينة الأولى تمثلها المنطقة بين الشعاعين المنطلقين من نقطة الأصل يصنع أحدهما زاوية قياسها $\frac{\pi}{2}$ مع المحور الحقيقي الموجب، ويصنع الآخر زاوية قياسها $\frac{2\pi}{2}$ مع المحور الحقيقي الموجب.

والمتباينة الثانية تمثلها النقاط الواقعة على دائرة مركزها النقطة (0, 2)، وطول نصف قطرها وحدتان مع النقاط الواقعة داخل الدائرة. فالمحل الهندسي للنقاط التي تحقق المتباينتين هو الجزء

المظلل في الرسم المجاور.

جيل 2005

الرياضيات كما ينبغى أن تكون

تتضمن الوحدة:

ا - الأمثلة

۲ - أتحقق من فهمى

۳ - التمارين

٤ - اختبار نهاية الوحدة

مع الاجابات الكاملة لكل منها