
 الصف الاحادي عشر - كتاب الططا"ب

- فربت التألبف

موسى عطا اله الطراونــة (رئيسًا)
عطــــاف جمعـــة المالكـــي

وفاء يحمد لصوي
روناهي " عمد صالح" الكردي (منسقًا)

الناشر : المركز الوهاني لتطوير المناهع

يسرُ المركز الوطني لتطوير المناهج استقبال آرائكم وملحوظاتكم على هذا الكتاب عن طريق العناوين الآتية:
(C) 06-5376262/237 06-5376266 P.O.Box: 2088 Amman 11941
(f) @ncedjor (C) feedback@nced.gov.jo (3) www.nced.gov.jo

 تاريـخ 2021/6/30 م، بـدئا من العام الــرامي 2021 / 2022م.
© HarperCollins Publishers Limited 2022.

- Prepared Originally in English for the National Center for Curriculum Development. Amman - Jordan - Translated to Arabic, adapted, customised and published by the National Center for Curriculum Development. Amman - Jordan
ISBN: 978-9923-41-264-0

All rights reserved. No part of this publication may be reproduced, sorted in retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Barnard's Inn, 86 Fetter Lane, London, EC4A 1EN.
British Library Cataloguing -in- Publication Data
A catalogue record for this publication is available from the Library.

10 اللرس 1 : الجهاز العصبي: التركيب والوظيفة

23 الدرس 2: الإحساس والاستجابة في جسم الإنسان

27 . الدرس 3 : الغُلد الصُّمُو والاتزان 36 مر اجعة الو حدة

39
الوحدة الثانية: المضم والنقل وتبادل الغازات
42
الدرس 1: الجهاز الهضمي: التركيب والوظيفة
50
الدرس 2: جهاز الدوران: التركيب والوظيفة
الدرس 3: الجهاز التنفُّسي: التركيب والوظيفة
71 مر اجعة الوحلدة

75 الوحدة الثالثة: الإخراج والتكاثر

78
الدرس 1: جهاز الإخراج: التركيب والوظيفة
88 الدرس 2: الأجهزة التناسلية: التركيب والوظيفة 110 مر اجعة الوحدة

115 الوحدة الرابعة: المناعة والمضادات الحيوية
118
الدرس 1: جهاز المناعة
130الدرس 2: المضادات الحيوية
135 مراجعة الوحدة
136 مسرد المصطلحات
141 قائمة المراجع
142 المواقع الإلكترونية

المقدمة
انطالقًا من إيمان المملكة الأردنية الهاشمية الراسخ بأهمية تنمية قدرات الإنسان الأردني، وتسليحه بالعلم
 وتطوير رها، لتكون مُعينًا للطلبة على الارتقاء بالمستوى المعرفي، ومجاراة الأقران في الدول المتقدمة.

 عمليات الإعداد والتأليف وفق أفضل الطر ائق المُتُّعَع عالميًّا؛ لضمان انسجامها مع القيم الوطنية الراسختة، وتلبيتها لحاجات الطلبة والمعلُّمين والمعلمات.
جاء هذا الكتاب مُحقُقُقا لمضامين الإطار العام والإطار الخاص للعلوم، ومعايير ها، ومُؤُّرات أدائها المُتمُمُّلة في إعداد جيل محيط بمهارات القرن الواحد والعشُرين، وقادر على مواجهة التحديات، ومُعتزِّ - في الوقت نغسِه - بانتمائه

 وعمليات العلم، فضألا عن اعتماد منحى STEAM في التعليم الذي يُستعمَل للدمج العلوم والتكنولو جيا والهندسة والفن والعلوم الإنسانية والرياضيات في أنشطة الكتاب المتنوعة، وفي قضايا البحث.

 على اكتساب مهار ات العلم، مثل: الملاحظة العلمية، والاستصصاء، ووضع الفرضيات، وتحليل البيانات، والاستنتاج القائم على التجربة العلمية المضبوطة، وصولًا إلى المعرفة التي تُعِين الطلبة على فهم ظواهر الحياة من حولنا.
 وتحفيز الطلبة على البحث في مصادر المعرفة المختلفة؛ فلغة الكتاب تُشُجِّع الطلبة أن يتفاعلوا مع المادئ المادة العلمية، وتحثُّهم على بذل المزيد من البحث والاستقصاء. وقد تضمَّن الكتاب أسئلة متوعة تراعي الفروق الفردية، وتُنتي لدى الطلبة مهارات التفكير وحَلٍ المشئكلات. أُلحِّ بالكتاب كتابٌ لالنشُطة والتجارب العملية، يحتوي على جميع التجارب والأنشُطة الواردة في كتاب الطالب؛ تيسٌ تنفيذها بسهولة، إضافةً إلى أنشطة إثر ائية، وأسئلة ميرة للتفكير .

ونحن إذنُقُدُمُ هذه الطبعة من الكتاب، فإنّا نأمل أنْ يُسِهِم في تحقيق الأهداف والغايات النهائية المنشودة لبناء
 الجديد إلى المحتوى، وإثراء أنشطته المتتوعة، والأخذ بماحظاحات المعلًّمين والمعلمات. والشَ ولي التوفيق
المركز الوطني لتطوير المناهج

(

\sim Regilation and Homeostasis
قال تعالى:
وَ

andimian

قياس وقت ردٌ الفعل

المواد والأدوات: ساعة توقيت، ورقة، قلم.
خطوات العمل:
(1 أقف مع زملائي/ زميلاتي في الصف على هيئة دائرة، ثم يمسك كلٌّ منَّا بيد زميله الذي بجانبه.
 التجربة، أضغط على ساعة التوقيت باليد اليسرى، تز امنًا بالضغط على يد زميلي باليد اليمنى، فيضغط كل طالب في الدائرة بيده اليمنى على يد زميله الذي بجانبه لحظة إحساسه بالضغط على يله اليسرى

من زميله الذي يقف قبله، إلى أنْ تُمرَّر إشارة الضغط خلال الدائرة كاملة.
3 في أثناء تمرير الإشارة ضمن الدائرة، أضع ساعة التوقيت في يدي اليمنى، ثم أَمسِك يد زميلي بيدي اليسرى. وما إنْ يضغط زميلي على يدي اليسرى حتى أُورِيف الساه الساعة. 4 أُدوّن بياناتي: أُعيد تكرار ما سبق حتى تصبح سرعة انتقال الإشارة أقصى ما يُمكِن، ثمم أُدوٍ الوقت وعدد الطلبة الذين شكَّلوا الدائرة.

56 أُعيد الدورة ناقاًّ الإشارة إلى الاتجاه المُعاكِس من الدائرة.
التحليل والاستنتاج: 1. أحسُب معدًّل الوقت الذي يستغرقه الطالب في الاستجابة للإشارة التي وصلته.
2. أستنتج: هل ازدادت سرعة استجابة الطلبة في أثناء التجربة؟ أُفسرٌ إجابتي. 3. هل نُقِلت الإشارة بالسرعة نفسها عند عكس الاتجاه؟ أُفسرَ إجابتي. 4. أتو اصل : أُناقِشُ زملائي/ زميلاتي في التنائج التي توصًا باتلت إليها.

الجهاز العصبي: التركيب والوظيفة
 The Nervous System: Structure and Function

الجهاز العصبي The Nervous System ينقسـم الجهاز العصبي في جسم الإنســـان إلى جزأين رئيسين، هـــا: الجهـاز العصبي المركـزي، والجهـاز العصبي الطرفـي. يتكـوَّن الجهـاز العصبي المركـزي Central Nervous System من الدماغ Brain، والحبــل الشــوكي Spinal Cord، في حين يتكوَّن الجهــاز الصصبـي الطرفي Peripheral Nervous System مـن الأعصـاب Nerves التـي تنـــل المعلومـات مـن الجهـاز العصبـي المركـري وإليـه، أنظر الشــكل (1).

الشُكل (1): الأجزاء الرئيسة للجهاز العصبي.

Action Potential جهد الفعل Resting Potential جهد الراحة
Saltatory Conduction النقل الوثبي
العصبونات الحسِّية

Sensory Neurons
العصبونات الحركية

Motor Neurons
العصبونات الموصلة

Interneurons

أتحقَّق: ما مُكُوِّات كلُ من الجهاز
العصبي المركزي،والجانهاز العصبي
الطرفي؟

الثشكل (2): الخلايا العصية و الخلايا الدبقية.

أفكُرْ فيمَ يستفاد من و جود التالافيف والانشناءات في القشرة

المحية؟

Central Nervous System الجهاز العصبي المركزي يحتوي الجهاز العصبي المركزي على مليارات الخالايا العصبية (العصبونات) وخالايا أُخرى تُسمْى الخلايا الدبقية الشية Glial Cells، أنظر الشُكل (2). يتكوَّن هذا الجهاز من الدماغ، والحبا الحبل الشوكي، وتتمثّل وظيفته الأساسية في استقبال إشارات كهروكيميائية (سيالات عصبية) من المُستقبِلات الحسِّية وتفسيرها، ثم إرسال سيالات عصبية إلى المستجيب المعني.

The Brain الدماغ

 يُحُلِّل الدماغ كَمًا كبيرًا من المعلومات التي تصله بصورة مستمرة، ويُصـِر الأوامر والتعليمات لأجزاء الجسم كلهِاء كلذا فهو يُعُدُّ المركز يُيِيٌ أجز اء الدماغ الرئيسة، ووظيفة كل جزء منها.

يستقبل رسائل من المُستقبِبالا الحسُّية في مختلف

Hypothalamus تحت المهاد يحتوي على مر اكز تنظيمـ عمليات
 ودرجة حر ارة الجسم. ويساعد على الهى عمل الجهاز العصبي والغُدد الصُمُ.

جذ جـع الدماغ Brain Stem

 العمليات الحيوية حتى في حالة اللاوعي، مشل: النوم.

Thalamus المهاد الوناسبة في المنح.

المخ Cerebrum

الشُكل (3): متطع في دماغ الإتسان يُبِّن نراكيه الرئيسة، ووظائنها.

ثاني أكبر منطقتـة في الدمـاغاغ، وهو يسيطر علـى وضعية الجسـم واتز انـه
 للأوامر الحركية الصادرة من التشرة

متناسقة ومتوازنة.

لأتحقًّ: : أوضح كيف يساعد المهاد في تُنسيتِ وظائف الـجسـم المـتتلفة.

Spinal Cord الحبل الشوكي

 إذ يصدر عنه واحد وثلاثون ن زوجًا من الأعصاب الشّا الشوكية التي تربط
 الإشارات الكهروكيميائية التي تصله، ويُصدِر الأوامر المُتعلًّقة بها مباشرة من دون اللجوء إلى الدماغ، كما يحلدث في حال ردً الفعل المُنعكِس

Peripheral Nervous System الحهاز العصبي الطرفي يتكوَّن الجهاز العصبي الطرفي من أجزاء الجهاز العصبي جميعها (ما عدا الدماغ والحبل الشـوكي)، بما في ذلك الأعصاب الدماغيـة Cranial Nerves الدماغية بالجمـجمة عن طريق فتحات مُحلًّدة، ويُحفًّز معظمها منطقتي الر أس والرقبة، في حين تعمل الأعصاب الشُوكية على تحفيّ تحيز بقية مناطق الجسم، أنظر الشُكل (4) الذي يُيِّن أُجزاء الجهاز العصبي الطرفي.

الشـكل (4):أجزاء الجهاز العصبي الطر في.
 أبحث ني مصادر المعرة المناسبـة عن نظريـة التفكير بأحد جز أي الدمـاغ، تم أُعِـدُ عرضا تقديميّا عن ذلك باستخدام برنامج زم زمالئي/زممالتي في الصف.

الجدول (1): تصنيف العصبونات بحسب وظيفتها.

الشكل	الكصف	النوع
	نقل إشارات من الـُستقبقالات الحسُسية إلى الجهاز العصبي المركزي.	$\begin{aligned} & \text { اللعصبونة } \\ & \hline \text { Sensory } \\ & \text { Neurons } \end{aligned}$
	نقل إشارات من الجهاز العصبي المركزي إلى العضطالات أو الغُدد.	$\begin{aligned} & \hline \text { اللحصربونات } \\ & \text { Motor } \\ & \text { Neurons } \end{aligned}$
	العمل بو صفها حلقة وصل بين النوعين الأُخريين من العصبونات؛ أي العصبونات الحسُسية، والعصبونات الحركية.	$\begin{array}{\|l} \mid \text { اللصوبوناتة } \\ \text { الموterneurons } \end{array}$

الجهاز العصبي الجسي Somatic Nervous System
 أنشطة الجسم الإرادية عن طريت ضبط العضلات الهيكلية، إضافة إلى ارتباطه بحركات أعضاء الجسم اللا إرادية التي تُعرَف بردً الفعل المُّنعكِس Reflex Action، أنظر الشُكل (5)، والجدول (1). فمشاًا، إذا لِمْنُتُ بيدي سطحًا
 الموجودة في الجلل، ثم تنتقل عن طريق العصبونات الحسٍّية إلى الجهاز العصبي المركزي. بعد ذلك تستقبل العصبونات الموصلة في الحبل الشوكي هذه الإشارات، ثم تنقل إشمارات الاستجابة عن طريت العصبونات الحركية إلى الجزء المستجيب، وهو في هذه الحالة عضالات اليد، فتنقبض العضالات لإبعاد اليد عن مصدر الحرارة. يُسْمَى هذا النوع من الاستُجابة ردًّ الفعل المُنعكِس، وهو لا يحتاج إلى أمر من الدماغ؛ فبالرغم من أنَّ الإحساس الـو
 أنُ يُدرِك الدماغ الرسالة التي وصلته. أمّا المسار الذي تسلكه الإشارة العصبية فيُعرَف بالقوس الانعكاسي.

الشـكل (5): ردُّ الفعل المنعكس والقوس الانعكاسي.

Autonomic Nervous System الجهاز العصبي الذاتي

 يتكوَّن الجهاز العصبي الذاتي Autonomic Nervous System من جهازين يعمان معًا، ويُمثُّان القَذُر نفسه من الأهمية، وهما: الجهاز العصبي الودّي Sympathetic Nervous System، والجهاز العصبي شبه الوذّي Parasympathetic Nervous System. لهذين الجهازين تأثيرات
 الكَرٍ والفُرًّ، وتثبيط عمل الأعضاء التي لا تخدم هذه الاستجابة. أمّا
 إذ يعمل في حالات الجسم الطبيعية، أو يساعد الجسم على العودة الـلى الـى وضعه الطبيعي، أنظر الشكل(6).

لأتحقًّق: ما التغيُرات التي تحدث في جسمو الدِ شاهد طغله يُهُمُّ بعبور شارع مكتظ بالسيارات من دون الالتزام

بقواعد المرور؟

الشكل (6): تأثير الجهاز العصبي الوذّي والجهاز العصبي شبه الوذي في بضض أعضاء الجسـم.

K相

 ذلــك باسـتخخدام بربيــة
 زمالئي／زميــاتي في الصـف．

The Structure of Neurons تركيب العصبيونات يُعَدُّ العصبون الوحدة الوظيفية للجهاز العصبي، ويتكوَّن من أربعة

أجزاء رئيسة، هي：
－جسم الخلية Cell Body：يحتوي هذا الجزء على النواة．
 نقاط اتصال بالخلايا الأُخرى، وتحمل السيالات العصبية في اتجاه جسم الخلية．
。 المحور Axon：امتداد آخر للسيتوبلازم من جسم الخلية يحمل السيالات العصبية بعيدًا عن جسم الخلية．
。 النهايات العصبية Axon Terminals：نقاط اتصال بين عصبون وآخر،
أو بين عصبون وخلية عضلية أو غُدًّة، أنظر الشكل（7）．
،وُحاط العديد من محاور العصبونات بغمد مليني Myelin Sheath، وهو يتكوَّن من طبقات مُتعدًّدة من الأغشية البالزمية لخلية شوان ．Schwan Cell اســم العصبونـات الملينيـة Myelinated Neurones ، في حين تُسـتى الــى العصبونات غير المحاطة بالغمد المليني العصبونات غير الملينية ．Non Myelinated Neurones

لأتحقُّق：ما عالاقة الزوائد الشجرية بالمحور؟؟

الشُكل（7）：تركيب العصبون．
أُحـُد اجز اجه．

تكوُن السيال العصبي وانتقاله
Formation and Transmission of a Nerve Impulse
يمتـاز الغشـاء البلازمـي للخلايـا العصيــة، شــأنه في ذلـك شــأن

 الكهروكيميائيـة (السـيالات العصبيـة) التـي ينقلها الجهاز العصبي اسـم جهـد الفعـل Action Potential.

Resting Potential جهد الراحة يبلغ فرق الجهد بين داخل الخلية العصبية وخارجها في كثير من العصبونات نحـو 70 mV-، ويُطلِّق على هذه المر حلـة اسم جهد الراحة Resting Potential
 Na+ - K+ Pump الراحة؛ إذ تعمل مضخة أيونات الصوديوم والبوتا على نقل ثالاثة أيونات صوديوم إلى خارج محور العصبون، وأيوني

وخار جها، أنظر الشكل (8).

 خاصـة بـكلً منهـا و ولأنًّ الغشــاء البلازمـمي يحـوي

 الراحـة، أنظـر الشــكل (9).

```
فأفْرُ مـاعاعاقـة جهـد الفعل
بالـدارة الكهربائية؟
```


الشُكل (8): تورُّع الأيونات
على جانبي غثـاء اليصبون في أثناء جهد الراحأ.

الشُكل (9): الهراحل التي يمر بها الیصبون

كبف تحدث عملية إزالة الاستعطاب؟

جهر الفعل The Action Potential
 يصلـه عـن طريــت خلية عصبيـة أُخـرى، أو أحــد المُسـتقبِلات الحسٍـية؛ ما يُسـبُب زيادة فـي نفاذية الغشُـاء البلازمي لبعـض أنواع الأيونـات المو جبة، مثـل الصوديـوم. يـؤدي دخـول أيونـات موجبـة عبـر قنـوات التسـرُّب
 -55mV الـذي يبلـن في كثيـر مسن العصبونـات Threshold Potential
 الكهربائـي Voltage Gated Na^{+}Channels، فتندفـع أيونـات الصوديـوم إلـى داخــل العصبـون بكميـات كبيـرة؛ مـا يـؤدي إلى إزالــة الاستــقطاب Depolarization + 30 mV

بعد أنُ تُغلَّق قنوات أيونات الصوديوم الحسَاسة لفرق الجهد الكهربائي تُفتَح قنوات أيونات البوتاسيوم الحسَّاسة لفرق الجهد الكهربائي Voltage Gated K+ Channels، فيتدفًّق البوتاسيوم إلى الـى خارج العصبون؛ ما يؤدي إلى إعادة الاستقطاب Repolarization. تظل هذه القنوات مفتوحة، ويستمر تدفُّقُ أيونات البوتاسيوم إلى الخار إلى حتى تصل إلى فرق جهد 90 mV-، وهو ما يُعرَف بزيادة الاستقطاب Hyperpolarization ومضخة أيونات الصوديوم والبوتاسيوم في إعادة تكوين جهد الر احة. انتقال السيال العصبي على طول المحور Transmission of Nerve Impulse along the Axon تكوّن جهد فعل في منطقة ما من محور العصبون يؤدي إلى إزالة الاستقطاب في المنطقة المجاورة من الغشاء، ليصل إلى جهد العتبة، فينشأ جهد فعل جديد، وهكذا، ثم ينتقل السيال العصبي على طول المّ
المحور، أنظر الشكل (10).

لأتحقّق : ما المقصود بز يادة الاستقطاب؟

(الربط بعد الأحلام

Current Biology نُشْر تحديثًا في مجلة دراسة شُملت 36 مشاركَا مُمطوُعًا، تفيد بإمكانية النائم إنشاء اتصال ثنائي الاتجاه في أثناء نومه وأحالمه؛ أي تواصله مع محيطه، والاستجابة لهذا التواصل في هــنه الأثنـاء. راقب الباحثون نشــاط
 الدماغ، إضافةً إلى مر اقبة حركة العين وانقباضات عضلات الوجه لكل مشارلـ. وقد طرحوا على النائمين أْسئلة إجاباتها نعم أو لا، ومسائل حسابيـة بسيطة، فتمثّلث إجاباتهم في الابتسام أو العبوس، وتحريك الجنون مرّات عِدَّة إشارةً إلى المجموع. وقد أوضح الباحتُون أنَّ الاتصـال الثّنائي الاتجاه مدكن حتى لو كان صعبًا.

ما إنْ يبدأ تكوُّن جهد الفعل حتى يتعذًّر البدء بجهد فعل آخر إلاَّ بعد انقضاء ملَّة زمنيّة تُسْتى فترة الجموح المُطلِّت Absolute Refractory Period، وفيها تكون قنوات أيونات الصوديوم الحساسة لفرق الجهد الكهربائي غير فاعلة. تعتمد سرعة انتقال السيال العصبي على قُطرُ محور العصبون؛ فكلًّما زاد القُطْر زادت السرعة، وتعتملد سرعة الانتقال أيضًا على وجود الغمد المليني وسُمْكه؛ فو جود الغمد يزيد من سرعة انتقال السيال العصبي؛ إذ ينتقل جهد الفعل من عقدة رانفيير إلى عقدة أُخرى، أنظر الشُكل (11). ويُطلَق على هذا النوع من انتقال السيال العصبي اسـم النقل الوثبي Saltatory Conduction. لأتحقًّق: أُوضٍ أهحمية الغمد المليني.

التشابك العصبي The Synapse
تبدأ الخلية العصبية بالتفُّع عند الطرف النهائي للمحور، مُكوُّنةٍ نهايات المحور Axon Terminals. وحين يلتقي عصبون بآخر ينشأ في مكان التقاء الخليتين مايُعرَف بالتشابك العصبي The Synapse،وتُسمتى المسافة التي تضصل بين الخليتين الشقق التشابكي Synaptic Cleft. تحتـوي نهايـات المحور على أزرار تشابكيـة فيها حويصـاتلات تشـابكيـة Synaptic Vesicles تحـوي مـواد كيميائيـة تُسمّى النواقـل

العصبية Neurotransmitters، مثل الأستيل كولين، أنظر الشُكل (12).

الــكـل (12): انتُال السـيال الصصبي في منطقة التـــابك العصبي.

أبحث في أثـر تعاطي المخدرات في صحة الجهاز العصـبـي، وانتـتـال السيــال العصبي، ودور المؤسسات الوطنية في الحد من انتشار المخلدرات، تُم أُعِدُ عرضًا تقديميًّا عن ذلك
 ثــم أعرضـه أمـام زمالائي/ زميلاتي ين الصف.

لتعرُّف خطوات اتنقال السيال العصبي في منطقة التشابك العصبي، أُلاحِظ المُخططّط الآتي:

لأتحقَّق: ما الذي يُسبِب إطلاق النواقل العصبية في الشت التشابكي؟

(90) (90)

Electroencephalogram (EEG) التخطيط الكهربائي للدماغ

 مـن أمـواج كهربائـيـة، وتدوينها.

يسـاعد تخطيـط الدمـاغ علـى كشــف العديــد مـن المشــكالات الصحيـة التـي تصيـب الدمـاغ، مثل: الصـرع، والأورام، والسـكتة الدماغيـة، واضطر ابـات النـوم، وتشـخـيص المـوت السـريري للدمـاغ فـي حـالات الإغمـاء الطويلة.

المواد والأدوات: دماغ خروف، صينية تُشريح، أدوات نشّر يِ، فقافيز. إرشادات السشلاهة: اسنَعمل أدوات التشُريح بحذر. خطوات الععل:

 33 أفصل نصفي الدماغ فصلاَ كاملا، ثُم أدرس الأجز اء الداخلِية لكلُ منهـا التحقلِيل والاسنيتـاج:

1. ــ ما أجز اء الدماغ الرئبسةٌ 2. ما وظائف أجز اء الدماغ التّي تُعرُفْتُهْ؟ 3. أحُد المخيخ.

vay

1 ـ الفكرة الرئيسة: ما أهمية الجهاز العصبي في جسمـ الإنسان؟
2 ـ أو 3 ـ أُقارِن بين كاً مهّا يأتي:
-تأثير الجهاز العصبي الوذي والجهاز العصبي شبه الوذي في القلب والجهاز الهضمي. - سرعة انتقال السيال العصبي في محاور العصبونات الملينية وغير الملينية. 4. أُفسّر كيف يتكوُّن جهد الراحة في العصبون.

5 ـ أرسم مُخْطًّاًا سهميًّا يُوضًا عملية انتقال السيال العصبي في منطقة التشابك العصبي. 6 ـ أوضح العوامل التي تعتمد عليها سرعة انتقال السيال العصبي.

الإحساس والاستجابـة في جسم الإنسان

Sensation and Response in the Human Body

Sensory Receptors المُستّقْبلات الحسنّية

 المُسستقبِلات الحسُسية Sensory Receptors، وهي تُصنَّف بحسب نـوع المُنُـُـه الذي تستتجيب له، أنظـر الجدول (2) الجدول (2): بعض أنواع المُستقبِّات الحسُسِة في جسمـ الإنسان.

Mechanoreceptors المُستِقِبات الميكانيكية
تُعـرَف المُســتقِبالات الموجـودة فـي الأذن الداخليـة بالخلايــا
الشـعرية Hair Cells، وتُعَــُدُ أحـــد الأمثلــة علـــى المُســتقبالات الميكانيكيـة التـي تُسـتخلَدم فـي عمليـة الســمع. لـمعرفــة تركيـبـ الأذن، أنظــر الشـــكل (13).

تدخـل الموجـات الصوتيـة التـي يجمعهـا الصيــوان فـي الأذن عـن طريـق القنــاة الســمعية؛ فيهتـز غشـــاء طبلـة الأذن، تُـم ينتقــل

 يُسِسْتى القوقعـة Cochlea، يمتلـئ بسـائل لمغي، أنظـر الشــكل (13).
 داخـل القوقعـة؛ فتتحـرًّك أهـداب الخلايـا الشـعـرية ليتكــوّن جهــد
 يُسـدرَك الصــوت.

Photoreceptors المُستمقبِلات الضووئية
 توجد المُسِتقبِبلات الضوئية Photorecepters في العين، أنظر الشكل (14) الذي يُيِّن تركيب العين.
 الضـوء، همــا: العصـي Rods، والمخاريـط Cones، أنظـر الشــكل (15). تســاعد المخاريـط الإنســان علـى

 جــُّا للرؤيـة الليليـة.

توجــد ثاثاثـة أنـواع مـن المـخاريـط: نـوع يستـجيب للضـوء

 تمتصهـا المخاريـط يتــح للإنسـان رؤيـة الألـوان جميعهـا الـانـا وتجـــر الإشـارة إلـى أنَّ المـخاريـط تـتركَّز في جزء من الشُـبكية يُســمّى البقعة المركزيـة Fovea Centralis.

 أتحقُّق: أُقارِن بين العِصِيٍ والمخاريط من حيث الوظيفة.
الشُكل (15): مُستعبِلات

(M)

القوقعة الصناعية

 نتيجة تلف الخلايا الشعرية في الأذن الداخلية؛ لمساعداتهم على الصـلى استعادة القدرة على السمع، أو تحسينها؛ إذ تعمل القوقعة المزروعة عمل الخلايا الشعرية التالفة.
يتكوَّن جهاز القوقعة الصناعية من جزأين؛ أحدهما: المُستقبِل الذي يضعه الطبيب تحت الجلد خلف الأذن عن طريق فتحة صغيرة، ثم يوصِله بأقطاب توضَع في قوقعة الأذن الداخلية. والحّ الآخر : الجزء الخارجي الذي يُثُّت خلف الأذن، ويحتوي على ميكروفون لالتقاط
 السمعي ليرسل إشارات إلى الدماغ فتحدث الاستجابة لها.

usjull $)^{2}$ and

1 ـ الفكرة الرئيسة: ما المقصود بالمستقبالات الحسًّي؟؟
 انتقال السيال العصبي إلى الدماغ.
 - الخلايا الشُعرية.

- الصِصِيُ والمتخاريط.
 تحفيزها، ثمم أذكر أمثلة على أماكن وجودها.

العُدد الصَّمُم والاتزان

يحتوي جســم الإنسـان على غُدد تُســـــم في بعض العمليات الحيويـة المهـــة، وتُصنَّف هــنه الغُدد إلـى نوعين، همـا: الغُدد

 والغُـدـد الصُّـُمُّ Endocrine Glands التي تُطلِق إفرازاتها مباشـرة في الدم.
جهاز الغُذد الصُّمُ Endocrine System يتكوَّن هذا الجهاز من مجموعة غُدد تُسمّى الغُدد الصُّمَ،

 الأعضاء المستهدفة Target Organs، أنظر الشُكل (16).

Endocrine Glands الغدد الصُّمر
Hormone الهرمون

Homeostasis الاتزان الداخلي

$$
\begin{aligned}
& \text { الشُكل (16): بعض الغُّد الصُّمٌ } \\
& \text { في جسم الإنسان. }
\end{aligned}
$$

 الصُّمٌ، والغُدد الإفرازية.

Hormones Classification تصنيف الهرمونات

 تُصنَّ الهرمونات بحسب تركيبها إلى ثلاث مجموعات، هي:الهرمونات الستيرويدية Steroid Hormones

هــنه الهرمونـات جميعهـا مشـتقة مـن الكولسـترول، ومـن أمثلتهـا:
هرمـون البروجسـترون، وهرمـون التستوسـتيرون. وهـي ترتبـط

Amine Hormones الهرمونات المشتقة من الحموض الأمينية تندرج تحـت الهرمونات غير السـتيرويدية، ومـن أمثلتها: هرمون الإنـا

Peptides Hormones الهرمونات البيتيدية
تعد من الهرمونات غير الستيرويدية، ومن أمثلتها: هرمون الإنسولين،
وهر مون الغلوكاجون.

تشترك الهرمونات المشتقة من الحموض الأمينية والهرمونات اللبتيدية في آلية العمل؛ إذ توجد مُستققبِلات هذه الهرمونات على الهِ الغشاء البلازمي للخلايا المستهدفة. ويؤدي ارتباط هذه الهر مونات بُمُستقبِاتها إلى تحفيز إنزيماتِ داخل الخلايا؛ للبدء بمسارات كيميائية حيوية، واستجابة الخلية المستهدفة، أنظر الشكل (18).

أتحقًّق: أُقارِن بين آلية عمل كلٍ من الهرمونات الستيرويدية، والهرمونات غير الستيرويدية.

$$
\begin{aligned}
& \text { الشـكل (18): آلية عمل الهرمونات } \\
& \text { المشـتُة من الحموض الأهينة } \\
& \text { والهرمونات المبيـدية. }
\end{aligned}
$$

Homeostasis الاتزان الداخلي

تؤدي أجهزة الجسموظائفهاعلى نحوِ أمثل عندبقاء جميع العوامل
 التَي تُعَدُ نقاطًا مرجعية Set Points. ويُسْمّى الثبات النسبي لعوامل بيئة
 درجة الحر ارة، وكمية الماء، والمواد الأُخرى، والرقم الهيدرو جينيني للدم، وتركيز الغلوكوز في الدم. أهمية الاتزان الداخللي Importance of Homeostasis قد يتغيًّ أحد عورامل البيئة الداخلية، مثل: درجة الحيرّ الحرارة، وتركيز
 في الأعضاء، فيحدث تنسيق بين جهازي التنظيم العصبي والهرموني لإعادة هذا العامل إلى وضعه الطبيعي، وتُسِهـم أعضاء الاستجابة في العـي إحداث التغيير المطلوب، مثل: العضالات، والغُدد. وقد يلجا الجسبم إلى آلية تُسمى التغذية الراجعة السلبية Negative Feedback للحفاظ
 عوامل البيئة الداخلية؛ بإحداث تأثير مضاد لها، للحفاظ على لـلى بقاء هذه العوامل ثابتة نسبِّا ضمن معدًّاتها الطبيعية، أنظر الشكل (19) . أتحقًّق: أُوضًح المقصود بكلٍ من الاتزان الداخلي، والتغذية الراجعة السلبية.

أبحث: يعمل مُنظُم الحر ارة في أجهزة التسخين الكهربائية وفقُـا لآليـة التغذيـة الراجعـة السلبية. أبحث في مصادر المعرفة المناسبة عن كيفية عمل مُنظٍ الحرارة للاحتفاظ بالمياه ساخنة عند درجة حر ارة مُعِينّ، ثمُم أكتب تقريرًا عن ذلك، ثمـ أقرؤه أمام زمالئي/زميلاتي في الصف.

أبحث: يلجأ الجسم أحيانًا إلى استعمل آلية سيطرة تكون فيها الاستجابة بزيادة إفراز عامل مُعريّن نتيجة الزيادة في مستوى عامل آخر . وتُسْمى هذه الآلية التغذية الراجعة الإيابية، وتؤدي دورًا في المفاظ على اتزان الجسمـ الداخلي . أبحث في مصادر المعرفة المناسبة عن أمثلة على هذه الآلية في جسم الإنسان.

ع

الـــكل (20): تنظلــمـمرجـة〉

تحــدث فــي الجســـم عنـــد
انخفــاض درجـة الحـــرارة
عــن معألــــا الطبيعــيـ

Thermoregulation تنظيم درجةّ حرارةٌ الجسم

 غُلَّة تحت المهاد Hypothalamus في الدماغُ تتحكَّمْ في درجة حر ارة الجسم. ويُمكِن تنظيم درجة الحر ارة هذه بطر ائتَ عِدَّة، منها التُعرُق، أنظر الشُكل (20).

عند.انخاض درجةالحرارة عن معـألها الطيعي

أفكْر كيف تسـاعد التشـعريرة على تدفئة الجســــ عند الشــعور
بالبرد؟

$$
\begin{aligned}
& \text { أفْفْ لمـاذا ايصبح لون بشـرتي } \\
& \text { ورديُّا في يـوم حارًّ }
\end{aligned}
$$

لأتحقًّ: :أوضًّح دور الجلد في تنظيم درجة حرارة الجسم.

استخدام تكنولوجيا النانو في علاج سرطان الجلد

 الحديثة التي تُستخدَم في التشخيص والعلاج، وتعتمد على استعمال مواد علاجية أو تشخيصية متناهية الصغر؛ إذ يتراوح حجمها بين (1mm) (1 1 mm (100 nm)، علمّاوي مليون نانو . تمتاز هذه الطريقة في العلاج بقدرتها على تعريض المناطق المصابة بسرطان الجلد لجرعات من العاج الكيميائي بدقة عالية، بعيدًا عن الخلايا
 والتصاقها بها مذّة كافية لقتل عدد كبير من الخلايا السرطانية.

التحكيل والاستتـاج: 1. أُقارْن بين الأنبوبين من حيث الثَئِرُ في درجة الحرارة. 2. أشُرح: كِف مثّل النمودّج دور النتعرُق في تنظيم درجة حرارة الجس؟؟ 3. أفشّر سبب اسنتّخدام الأنبوب الملفوت بالمنديل الجاف. 4. أمثلٌ النّنائِ برسم بياتي.

المو اد والأدوات: أنبوبا اختبار ، ماء ساخن درجةّ حرارنّه
 ميز انا حرارة، ورقةّ، قلم.

إرشادات السلامة:
الحذر من انسكاب الماء الساخن على الجسم. خطوات الععل: أضع 20 mL من الماء اللساخن في كلٌ من أنبوبي

الاختبار ، نمُ أرقُّهما بالرقمين (1) و (2)
2
ـ ألفُ الأنبوب رُم مُ (1) بالمنديل الورقَي المُبُلًّل.

ـ ـ أضع ميزان حرارة ار في كل أنيوب.

 في الجنول الآني:

التحكُم في تركيز الظلوكوز في الام

Control of Blood Glucose Concentration

البنكرياس غُدًّة ذات طبيعة مزدوجة؛ فهي تُفرِز إنزيمات هاضمة في الأمعاء عن طريق قنوات، وتُفرِز أيضًا هرموني الإنسولين Insulin والغلو كاجون Glucagon مباشرة إلى الدم.
يعمل الإنسولين والغلوكاجون معا للحفاظ على تركيز الغلوكوز
 السلبية، أنظر الشُكل (21).

花

أتحقًّق: كيف تنظّم غُدّة البنكرياس مستوى الغلوكوز في الدم؟

جهــاز قيـاس الغلوكــوز مـن دون وخز بالإبـر هو تقنيـة حديثة

 الضوئـي، وإظهـار التـراءات.

My

1 ـ الفكرة الرئيسة: أُوضًا ما يأتي:
 - مفهوم الهرمون.

- الدقصود من التغذية الراجعة السلبية.
- الطر ائق التي يعمل بها الإنسولين عندما يزيد مستوى الغلوكوز في الدم على الحدٍ الطبيعي لإعادته إلى المستوى الطبيعي.
2 ـ أوضح العوامل التي تؤثر في الاتزّ ان الداخلي لجسم الإنسان.
 4 4. أُصنُف الهر مونات الآتية إلى هرمونات ستيرويدية، وهرمونات مشتقة من الحموض الألـو الأمينية، وهرمونات ببتيدية:
 5. أدرس الشُكل الهجاور الذي يُوضُح الطر ائت التي يستجيب بها الجسم للحفاظ على درجة حرارته (37 ت تقريبًا)،
 ثم أُجيب عن الأسملة الآتية:
أ . أستتِج: ما اللُنُبُ الذي أذّى إلى حدوث هذه الاستجابة؟ ب. ما الطر ائق التي استجاب بها الجسسم لإعادة درجة حرارته إلى معدّلها الطبيعي؟
جـ. أُحلدّد نوع الدُستقبِبلات التي استشعرت التغيُرٌ في درجة الحر ارة. د . أُحدُد المركز العصبي الدسؤول عن تنظيم درجة حرارة الجسمـ.

الإثراء والتِوشُع

استذام الطب الرقمي في تشثخيص الأهر اض و علاجها

Using Digital Medicine in the Diagnosis and Treatment of Diseases

تُستعمَل وسـائل الــذكاء الاصطناعي لتحلديـد احتمال ظهور حالـة صحية مـا، أو تفاقمهـا و وقد تمكًّن

trewenesased

السؤال الثّاني:
 (X) 1. من الأمثلة على المُستقتبِلات الميكانيكية الخلايا الشُعرية الموجودة في الأذن الداخلية. 2. الأو عية الدمويةَ في الجلد تتسع عند انخفاض درجة () الحرارة.
3. الاستجابة بآلية التغذية الراجعة السلبية تنضـمُن زيادة في أحد العو امل نتّيجة الزيادة في عامل آخر. ()
4. المخاريط تساعد الإنسان على الرؤية في الضوء ()

الخافت.

السؤال الثّالث: أفستُر كلاُ ممَا ياتّي:
 فـنــرة الجهـوح.
2. سبب تُسمية البقعة العمياء بهذا الاسم.

السؤال الرابع: بعانتي بعض النـاس مـن مـرض العشـا الليلـي. فائئِ
 نحو صحبح؟

السؤال الخامس:
أُقــارن بِــن الجهــاز العصبــي الجســـي والجهــاز

لكل فقرة من الفقّرات الأتية أربع إجابات، واحدة فقط صحيحة، الحذدها:

1. الوحـدات الأساســية للتركيـبـب والوظيفـة فــي الجهـاز العصبـي هـي:
أ.العصبونات.
ج.الشجيرات العصبية.
2. يشير الحرف (أ) في الرسم النّالي إلى: أ.الغُد الملبيني. ج.الزواند الشجرية.
3. مكان انتقّال المبيال العصبـي مـن عصبـون إلـى آخر هـو: أ. التشابك العصبي.

ج. الزو اند الشُجرية. 4. يتكؤن الجهاز العصبي المركزي من:

أ. أعضاء الحسن. ب. النماغر والحبل الشُوكي. ج. أهضاء الاستّجابة.
د. الخلايبا العصبية الحسّيةّ والحركية.

فـي محـور العصبـون:
ب.
K^{+}.
Ca^{2+}.
$\mathrm{Cl} . \rightarrow$
6. الجـزء مـن الدمـاغ المسـؤول عـن قَّرنــي علـى اسـتّيعاب هـذا الـدرس هـو:
ب. المخيخ.
ج. تُحت المهاد.

السؤال السادس:
اوفُّق بين المصطلح العلمي والنَعريف المُناسبب المُقابِل لـه في الجدول الآتي.

كُّة	i	النقّل الوثبِ
فرق الجُهد بين داخل الخلية العصبية وخارجها في كثّر من العصيونات، ويبلغ 70 mV- تُقريبّا.	ب	التنظِيم الأسموزي
	て	جُهد الراحة
ضسن مستر باتاتها الطبيعية داخل الجس.	2	المُصنتُقِالات الحسئة
	\rightarrow	

السؤال السابع:
أدرس الشُكل الأتي الذي يُيئن دور آلية التّغذية الر اجعة السلبيةٌ في نتظيم مستويات الغلوكوز في الدم ضمن معدُّلاته الطبيعية، ثم اجيب عن الأسنلة التي تليه:

1. ما الجزء المشار إليه بالرمز (س)؟
2. ما المُنْبَّه لإفراز الهرمون (2)

أـ أُحكد الطرائق التّي بحصل بها الجسم على الماء.
 المـاء.

الفكرة العامة:

لكلً من أجهـزة الهضم والدوران والتنفُس وظائف خاصـة، غير انَّها تتـآزر لكي تسـتفيد جميع الخلايا مـن الغـذاء الــني يتناولــه الإنســان، وتحصل علـي الطاقة منـه، وتتخالًّص مـن الفضاتات. الدرس الأول: الجهاز الهضمي: التركيب والوظيفة. الفكــرة الرئيسـة: يعمـل الجهـاز الهضمسي علمى تحويـل الغـذاء إلـى مـواد بســيطة يُمكِـن امتصاصهـا والاسـتفادة منها، وتخليص الجســم مـن الفضــالات الصُّلْــة.

الدرس الثاني: جهاز الدوران: التركيبوالوظيفة. الفكـرة الرئيســة: يتكــوَّن جهـاز الــدوران مـن
 نقـل المـواد اللازمة إلـى الخلالايـا، وتخليصها
 حاجة الـجســم. الدرس الثالث: الجهاز التنفُسي: التركيب والوظيفة. الفكرة الرئيسـة: ينقل الجهاز التنفُّسـي الأكسجين مـن الهواء الجـوي إلى دم الإنسـان، ويُخلًّص الـِّ الجســـم من ثاني أكسـيد الكربون.

adrainlens

دور إنزيم الأميليز في عملية الهضم

المواد والأدوات: محلول أميليز، محلول نشا (نسبة تركيز كرُ منهـا \% 5)، أنبوبا اختبار، طبقان صغير انيران، قطّارتانان،
 (لوغول)، محلول بندكت، ميزان حر ارارة، مصدر حرارارة.
إرشادات السـلامة: استعمال المياه الساخنة والميارئر المصر
الحراري بحذر.
خطوات العمل:
(1) أُرقُم أنبوبي الاختبار بالرقمين (1) و (2)، ثمأُرقٌّم ه هألاحِظ ما حدث للون اليود في كل طبق.
(7) أُجرِب: أُضيف ألا 1 من محلول البندكت الأزرق

إلى كل أنبوب، وأستمر في عملية التسخين. 8 8أُكارِن ما يحدث في الأنبوين بعد مرور 5 سير
التحليِلِ والاستنتاج:

1. أتوقًّ سبب وضع الأنابيب في حمّام مائي درجة

$$
\text { حرارته } 37^{\circ} \mathrm{C} .
$$

2. أستـتج: علامَ يدل اختفاء النـُـا من الأنبوب الأول؟ 3. أُصْنُ الطبقين إلى طبق حدث فيه هضمب، وطبق كم بـ يحدث فيه هضم. 4. أُفسّر سبب تكوُن راسب أحمر بر تقالي في أحد الأنبوبين. 5. أتوقًّع سبب استخدام الأنبوب الثاني.

الطبقين بالحرفين (أ) و(ب) 22 أضع في أنبوب الاختبار رقم (1) (1) 5 المن من محلول النشا، و 5 و 5 من محلول الأميليز، ثم أضع في أنبوب الاختبار رقم (2) mL 5 مـن محلول النشال، ثم أرجُهها جيدًا.
33 أُمسِك كل أنبوب بماتقط، ثم أضعهما في حمّام
 أنْ تظل درجة الحرارة $377^{\circ} \mathrm{C}$ تقريبًا.
(4) أنقل mL 1 من أنبوب الاختبار رقم(1) إلى الطبق (أ) ، ثم أنقل mL 1 من أنبوب الاختبار رقم (2) إلى الطبق (ب).
 محلول اليود إلى كل طبق، ثم أُدوِّن ماحطاتي

الجـهاز الـضمماي: التركيب والوظيفة

Digestive System: Structure and Function
الحرسا

الهضم على طول القناة الهضنمية Digestion in the Digestive Tract
يتكوَّن الجهاز الهضمي من القُناة الهضمية، والغُدد المُلحَقَة بها. تضـم القنـاة الهضميـة الفـم، والبلعـوم، والمـريء، والمعـدة، والأمعـاء الدقيقـة، والأمعـاء الغليظة، وفتحة الشـر ج، في حين تضم

كالفلرة الرُبِسة :
يعهـل الجهـاز الهضمي علـى تحويل الغـذاء إلـى مـواد بســيطة يُمكِـن امتصاصها والاستفادة منها، وتخليص الجســم مــن الفضـالات الصُُلْبـة.
<تاجاحان النَّهُم:

- أُحدِد تركيب الجهاز الهضمي، ووظيفة كل جزء منه.
- أُصِف عمليات الهضم على طول القناة الهضمية. : irlabnablacuabibla

Peristalsis الحركة الدودية العضلة العاصرة الفؤادية

Cardiac Sphincter Muscle
Chyme الكيموس

Pyloric Valve الصمام البوابي استحالاب الدهون
Fat Emulsification

$$
\begin{aligned}
& \text { الشككل (1): القناة الهضمية، } \\
& \text { والعُد المُلمَحَة. }
\end{aligned}
$$

الـــكل (2):الأزواج الرئيسة الثلاثــة مـن النُـد اللعابيـة فـي الفـم: العُـد النكافِيـة التـي تقـع أمـام الأذنِـن،
 تـحـت اللسـان.

(M)

علاقة بكتِريا القناة الهضمية

 بالأمراض العصبيةتُنتِّج البكتيرِا التي تعيش في الأمعاء موادَ تتتقل إلى الدمـاغ. وقــد طـوَر باحثون في الهندسة اليبولو جية والهندسة الميكانيكية قناة هضمية صناعية؛ للراسة تأثير هنه البكتِريا في كلٍ من أنسِجة المخ السليمة، وأنسجة المخ المأخوذة من مرضـى باركنسون، ونَبيّن هـمـ أنَّ هذه المواد تفيـد الأشخــاص الأصحاء، لكنها قد تؤدي إلى حدوث مضاعفات لأمر اض دماغية مُعيُّن، مثل : اختلالال البروتِّن، وموت الملايا العصبية المرتبط
بمرض باركنـبون.

Digestion in the Mouth الهضم في الفم
تعمل القواطع والأنياب والضواحك على تقطيع الطعام وتمزيقه، وتطحن الأضراس الطعام، في حين يُحرٍّكُ اللسان الطعام؛ لخلطه باللعاب، وترطيبه. يو جد في الفم ثُاثة أزواج رئيسة من الغُدد اللعابية، أنظر الشكل (2).تُفرِز الغُدد اللعابية إنزيم ألفا أميليز Amylase α اللذي ينتقل مع الغذاء إلى الدعدة حيث يستمر تأثيره فيها ساعات عِدًّة؛ إذ يعمل على تحلِل الكربوهيدرات المُعقَّدة التركيب (مشل النُشا)، وتحويلها إلى سكريات بسيطة التركيب. وحين يصل الطعام إلى البلعوم Pharynx ؛ وهو أنبوب عضلي يمر خلاله الغذاء إلى المريء Esophagus، يعمل لسان المز مار الموجود أعلى الحنجرة على تنظيم دخول الهو اء في القصبة الهوائية، والطعام في المريء؛ إذ يُغِلَ لسان المزمار القصبة الهو ائية سريعا في أثناء عملية البلع؛ ما يمنع دخول الطعام في التصبة الهو ائية، ثـم يعود لسان المز مار إلى وضعه الطبيعي عند التنفُّس.

علاقة صحة الفم بحماية القلب يُمكِنِ للبكتيريا المُسِسِّة لالتهابات اللثّة والأسنان أنْ تتقل إلى مجرى اللدم، وتلتصق بصمامات القلب؛ ما قد يُسبِب التهاب البطانة الداخلية للقلب وصماماته، علمًا بأنَّ الأشخاص النّين خضعوا الزراعة الصمامات الصناعية، أو زراعة القلب، هم أكثر عرضة للإصابة بهذه الالتهابات.

يدفـع المـريء الطعهـام إلـى المعــــة بفعـل الحر كـــة الدوديـة Peristalsis الملســاء فــي جـــدار المـريء، التــي تسـتمر علــى طــول التنـــاة الهضميـة.

 العاصرة الفؤاديـة Cardiac Sphincter Muscle؛ وهـي عضلـة علـى شـكل حلقـة تتحكَّـمر فـي انتــــال الطعـام مـن المـريء إلـى المعــدة، وتمنع ارتــداده.
وإذا حـــث خلـل فـي عمـل العضلـة العاصـرة الفؤاديـة، فـإنًا الشـخص قـد يعانـي حالـةُّتُسـمّى الارتـداد المريئـي؛ فيشــعر بحرقة شـديدة، أنظر الشــكل (4). لأتحقًّق: أُوضًح المقصود بالحركة الدودية.

لمن بروتين) في صـورة
لا أقراص؟

المعر فــة المناســبة عـــن علاقـــة أنــراع المافــات الغذائـــة، ومنهـا: المنكهـات والماتلنـات، والــــواد الحافظـة، والمكنـــالات الغذائيـة
 أعرضسه عـلى زمالئـي/ زميـالتي في الصـف.

أتحقًّق: ما أهمية المادة
المخاطية في المعدة؟

Digestion in Stomach الهضم في المعدة يحدث مزيد من تقطيع الطعام والمزج بالعصارة الهاضمة نتيجة الانقباضات المتتالية للعضالات الملساء في جدار المعدة؛ إذ تحتوي الطبقة المُمُطًّة للمعدة على ملايين الغُدد الصغيرة، التي يُشِرِز بعضها
 حمض الهيدركلوريك HCl الذي يُوفًّ الرقم الهيدروجيني الأمئل لنشاط إنزيم الببسين (pH=1.5-2)، ويُسِهـم في قتل الجراثـيم التي تدخل مع الطعام، وتُفرِز غُدد أُخرى مادة منخاطية تُبطُن جدار المعدة المِّ لمنع تأثير العصارة الهاضمة في المعدة. في أثناء استمرار عملية الهضم في المعدة يتكوَّن تدريجيًّا سائل كثيف القوام يُسْمَى الكيموس Chyme. وبعد مدَّة تتراوح بين ساعة وخمس ساعات يتحرَّك الكيموس نحو الأمعاء الدقيقة، فيفتح الصمام البوابي Pyloric Valve الذي يقع بين المعدة والأمعاء الدقيقة، ويبدأ الكيموس بالتدفُقَ إليها.

Digestion in Small Intestine الهضم في الأمعاء الدقيقة تتألّف الأمعاء الدقيقة Small Intestine من ثلاثة أجزاء، هي: الاثنا

عشر، والصائم، واللفائفي، أنظر الشكل (5).

$$
\begin{aligned}
& \text { الـــــكل (6): الكبـــ، والبنكريــاس، } \\
& \text { والحوصلة الصفراويـة؛ كلهـا تصـب } \\
& \text { إفرازاتهـا في الاثنـي عشـر. } \\
& \text { مــا دور هــنها الإفـرازات في عمليـة } \\
& \text { الهضـــ؟ }
\end{aligned}
$$

تعتملد عملية الهضم في الأمعاء اللقيقة على إفر از إنزيمات هاضمة من بطانة الأمعاء الدقيقة لهضم الكربوهيدرات والبروتينات والدهون، وعلى إفرازات كلٍ من الكبد، والبنكرياس، والحوصلة الصفر اوية. تحدث في الأمعاء الدقيقة معظم عمليات هضم الطعام وامتصاصه، ويستقبل الاثنا عشر؛ وهو أول جزء من الأمعاء الدقيقة، الكيِموس من المعدة، إضافةٌ إلى العصارات الهاضمة من البنكرياس، والكبد، والحوصلة الصفراوية.

الغثد الملحقّة بـلالجهاز الـهضمي
Glands Associated with the Digestive System إضافة إلى الغدد اللعابية التي درستُها سابقًا، يُعّ البنكرياس و الكبد والحوصلة الصفر اوية غددًا ملحقة بالجهاز الهضمي.

Pancreas البنكرياس
غُلَة تُفرِز إنزيمات تستكمل هضم اللكربوهيدرات، مشل: الأميليز البنكريـاسي. وهـي تُفـرِز أيضُا إنزيمـات تستكمل هضــمـ البروتينات، مثل: إنزيــم التربسين، وإنزيـم الاليبيز الـذي يعمل علـى هضم الدهون. وكذلك تُفرِز بيكربونات الصوديـوم القاعدية التي تعمل على معادلة حمو ضة الكيموس.
Liver and Gallblader الكبد والحوصلة الصفراوية الكبد هو أكبر أعضاء الجسمه، وله وظائف عديلة، منها: إزالة السموم التي تدخل مع الغذاه والعقاقير والأدوية قبل توزيعها على خلايا الجسم، وإنتاج العصارة الصفراوية التي تُخزّن في الحوصلة الصفراوية إلى حين وصول طعام دهني إلى الأمعاء الدقيقة.

2etin 8
الإنســان، ويُســنى أحـيانــا
 أبحــت في مصـــــدر المعرفـة

 الإنســان، ثــــم أكتــبـبت تقريـرًا عــن ذلــك، وأقـــرؤه أمـام زمالئي/زميــاتي في الصـف.

2 8

مشكالات صحية بسبب انسداد
الهوصلة الصفر اوية أو قناتها. أبحث في مصادر المعرفة المناسبة عــ أعراض الإصابـة بــنلك، وتعديل نظام الغذاء ومُكوُناتـ الاصـ هؤلاء الأشـخاص، ثـــم أكتب تقريرًا عن ذلك، ــــم أقروْه أْمـام زمالئي/زميلاتي في الصف.

الدهـون في الأمعـاء الدقيقة، أنظر الشُكل (7).
 أ ـ العصارة الصراورية.
ب. الإنزيمات المُمُرَّرَة من البنكرياس.

bluiuv

محاكاة استححلاب الدهون
2 mL المو اد والألوات: أنبوبا اختبار ، 10 من الماء، من زيت الزينّون، 3 mL من سانّل غسيل الصحون. إرشادات السلاهة: الحنر من انسكاب الزيت على الملابس، أو على الأرض. هلحوظـة: سـانّل غسيلِ الصحـون مسادة صابونيـة لهـا
 خطوات العمل:
 مـن الزيــت فــي كلا الأنبوبيـن.
التحليل والاسنتتاج:
1 ـأقارن بين شكل المحتويات السائلة في الأنبوبين. 2 ـ أسنتّج وجه التشّابه بين تأثير سائل غسيل الصحون في الدهون، وتأثبير العصـارة الصفر اوية فيها كما درسنها. 3 ـ أنواصل: أناقشُ زمــلانـي/زميـلانـي في النتّانـج النتي نوصتلت إليها.
 أحد الأنبوبيـن.
3 أرجُ محنويات كل أنبوب جيذّا، ثمُ أُوْن ملاحظنّتي. 4 ألاحـط مظهـر (شـكل) المحنويـات المنـانلة فـي كلَّ مـن الأنبوبيـن.

Absorption and Defecation الامتصاص والإخراج بعد استكمال هضم الطعام تحدث عملية امتصاص المواد المغذية والماء؛ إذ ينتقل معظمها من جدران الأمعاء الدقيقة إلى الدم، ومنه إلى الخلايا في مختلف أنحاء الجسم.
امتصاص الغذاء في الأمعاء الدقيقة Absorption in Small Intestine

 Villi كل خملة بشبكات كثيرة من الشعيرات الدموية Capillaries والشعيرات اللمفية Lymphatic Capillaries. تعمل التراكيب السابقة مجتمعة على
 الخلايا للاستفادة منها، أنظر الشُكل (8).
الامتصاص والإخراج في الأمعاء الغليظة Absorption and Defecation in Large Intestine تتكـوَّن الأمعـاء الغليظة Large Intestine مـن الزائـدة الدوديـة، والقولـون، والمستقيم، وتنتهي بفتحـة الشـرج، أنظـر الشـكل (9). تعمل الحركـة الدوديـة الناتجـة مـن انقباضـات العضـاتلات الملســاء فـي جــدار الأمعـاء الدققيقـة على دفع بقايا الطعـام غير المهضو إلـى القو لونون، فيُمتُصص المـاء وبعض الأمـلاح المعدنية والفيتامينـات، ثـم تُطرَح الفضـالات الصُّلْبَ التـي تصـل المستقـيم عن طريـق فتحة الشُــرج.

الـنكل (9) : أجزاء الأمعاء الغليفة.

التنظير الكبسولي Microendoscopy عملية تُستخلَّم فيها كاميرا تنظير لا سلكية دقيقة، تساعد الأطباء على رؤية داخل الأمعاء الدقيقة التي لا
 الكاميرا داخل كبسولة يبتلعها المريض. وفي أثناء انتقال الكبسولة خلا المال التال
 يرتديه المريض على حزام حول الخصر.

أتحقَّق : أُقارِن بينٍ الأمعاء الدقيقة والأمعاء الغليظة من حيث المواد التي تُمتَص في كِلٍ منها.

(

1 ـ الفكرة الرئيسة: ممّ يتكوّن الجهاز الهضمي؟
2 ـ أَصِف دور كلً ممَا يأتي في عملية الهضم بالمعدة :

- حمض الهيدروكلوريك.
- العضلات الملساء في جدار المعدة.
 4. أُوضًا دورِ دور كلٍ من أعضاء الجهاز الهضمي الآتية:
- المريء. الكبد.
- الأمعاء الغليظة. 5. أُفسِر ما يأتي:
- ينصح الأطباء / الطبيبات الأشخاص الذين يستأصلون الحوصلة الصفراوية بالإقلال من تناول الدهون. - يتلاءم تركيب الأمعاء الدقيقة مع وظيفة الامتصاص. 6. أُوضًا المقصود بكلٍ من الكيموس، وعملية استحلاب الدهون.

جهاز الحوران::التركيب والوظيفة

The Circulatory System: Structure and Function

الحرس

جهاز الاوران The Circulatory System يتكـوَّن جهاز الـدوران في الإنســان مـن الأوعية الدمويـة والدم

 الجهازيـة، والـدورة الدمويـة الرئويـة، أنظر الشـكـل (10). ينقـل جهـاز الـدوران الأكسـجين والـــواد الغذائِــة ومـواد أُخرى ضروريـة (مـــل الهر مونـات) إلى الخلايــا ويُخلاًصهـا مـن ثانـي أكسـيد الكربــون والفضــالات النيتروجينيـة.

 يتكـوَّن جهاز الـدوران مـن القلب والـدم والأوعيـة الدمويـة ويـة ويعمل علـى نتـلـ المـواد اللازمـة إلـى الخلايـا، وتخليصها من الفضلات والمـواد الأُخـرى الزائـــة علـى حاجـة الجســم.
: نتاجانَاتالتُلُمُ

- أُحلٍد تركيب أجزاء جهاز الدوران، ووظيفة كل جزء منها.
- أُصِف آلية عمل القلب. - أُوضًا آلية نقل الموادفي الجسم. - أتتبَّ آليـة تجلُّلُط الـدم فـي حالـة :الجروح.

Platelets الصفائح الدموية
Plasma
البازما

الـدكل (10): تركيب جهاز الدوران،
والدورتين المدويتين: الجهازينو والرئرية.
لأتحقًّ: :لماذا يـوصف جهاز الدوران في الإنسان بأنه مغلن؟

> أثارن تركيب كل (11):أنواع الأوعية الدموية: الشّريان والوريد.

تركيب الأو عية الدموية ووظيفتها
The Structure and Function of Blood Vessels تُصنَّف الأوعيـة الدمويـة بحسـب وظيفتهـا إلـى ثــاث مجموعات، هـي: الشـرايين، والأوردة، والشـعيرات الدمويـة، أنظـر الشــكل (11).

الشرايين Arteries
تنقل الشُرايين الدم بعيدًا عن القلب، وتُعُدُ جدرانها أكثرُ سُمْكَا وقوةً
 تتألَّف الجدران السميكة للشر ايِن من ثلاث طبقات، هي:。 الطبقة الداخلية التي تتكوَّن من خلايا طلائية. ه الطبقـة الوسطى التـي تحتـوي علـى أليـاف مرنـة، وعضـالات ملسـاء،
وأليــاف كو لاجيـن.

ه الطبقـة الخارجيـة التـي تتكوَّن من نسـيـج ضـام يحتوي علـى ألياف مرنـة، وأليـاف كولا جين.

يمنح هذا التركيب الشرايين القوة والمرونة معَا؛ إذ تمنح ألياف الكو لاجين جدار الشريان القوة، وتسمح الألياف المرنة بتوسُع الشُريان. تحتوي جـدران الشُرايين أيضًا على عضاتلات ملساء يسهـمـ انقباضها وانبساطها في جعل قُطُر تجويف الوعاء الدموي قابِلًا للتمدُّد والتقاُُصى . تتفرُع الشُرايين بعيدًا عن القلب إلى أوعية أصغر تُسْمَى الشُّريُّنات، وفيها ينخغض ضغط الدم. وتحوي الشرايين البعيدة عن التلب أليافًا مرنة أقل من تلك القريبة إليه.

Veins الأوردة
تنقل الأوردة الدم من أعضاء الجسم بضغط منخغض، فيعود الدم

 الطبقة الداخلية، والطبقة الوسطى، والطبقة الخارجية، علمَا ألّْنَ سُمُك الطبقة الوسطى في الأوردة أقل منها في الشر ايين، وأنَّ تجويف الوريد أكبر من تجويف الشريان الذي له الحجمي نفسه.

 في الاتجاه الصحيح، وهي:。 ضضط الدم القادم من شبكات الشُعيرات الدموية.。 وجود صهامات Valves في الأوردة. ه انقباض عضلات الساقين عند الحركة. هانخفاض ضغط الدم في الأذينين؛ إذ يدخل الدم في القلب في أثناء انبساط الأذينين.

الثـكل (12): :تمُّنُ الدم في الأردرة.

أُوّْع الدتصود بالصسام.

دوالي الأوردة
varicose veins صطامـات الأوردة. أبحث في مصادر المعرنة المناسبة عن مُسُسِّات هذا المُلله، وأبرز أعراضـ، وطر ائتّ علاجـهـ،
 قصيرًا عن ذلـك باستخـــدام
 أعرضه أمام زمالئي/زميلاتي في الصض.

تـوجــد ثالاثــة أنواع رئيسـة مـن الشعيرات الدمويـة، هي: الشعيـرات الدموية المستمرة Continuous، الميا والشعرِات الدمويـة المنفــة Fenestrated الدمويـة الجيبية Sinusoidal. أبحث في مصادر المعرفة المناسبة عـن هــنه الأنـواع، وأماكن وجودها،وأهمية كلٍ منها، ثمأُعِدُّ فيلحّا قصيرّا عن ذلك باستخدام برنـامـج movie maker ، شـم أعرضه أمام زمالئي/زمياتي يفي الصف.

Capillaries الشُعيرات الدموية
الشـعيرات الدمويـة أصغر الأوعية الدمويـة في الجســم،
 شـكل شـبكات تعمل على تبادل الغــازات (مثل: الأكــــجين، وثاني
 بيـن الـدم وخلاليـا الجســــما المختلفـة.

 فتـط، ويتر اوح قُطُر الشـعيرات الدموية بيـن بر بـر (10-8) ؛ أي ما يكفي
لمـرور خالايـا الـدـم الحمـراء بها.

يتدفَّق الــدم ببطء شــديد في الشـعير ات الدموية، ويحـدث تبادل للموادعـن طريت جــدران الشــعيرات الدموية.

أتحفَّق : أُوضّح التاوؤم بين تركيب أنواع الأوعية الدموية المختلفة وتركيب كل منها.
 خـاص بذلك تظهر قراءتان (علوية، وسفلية) على شاشــة الجهاز .

 زمالئي/ زمـــالاتي في الصـنـ

تركيب الام ووظِقته

The Structure and Function of Blood

 (4-5) L L مـن الــدم تقريبُـا، أنظر الشـكـل (13).

Cellular Components of Blood مُكوُنات الدم الخلوية
 الحجــم الكلــي للدم، وتشــمل مـا يأتي: خلايا الدم الحمراء Red Blood Cells

 حجمهـا، فتـزداد كفاءتهـا في نقل الأكســجين، وهي صغيـريـرة الحـجم؛

 ذلك بوسـاطة العُعــد اللمفيـة والطحالـ .
لا تحتـوي خليـة الــدم الحمـراء علـى نــواة، أو ميتو كندريـا، أو شـبكة إندوبلازميـة؛ مـا يمنـح جزيئــات الهيموغلوبين مسـاحة أكبر.

$$
\begin{aligned}
& \text { الشيكل (13): مُكوُنات الدن ونسبها } \\
& \text { التقريبية في إنسان طبيعي. }
\end{aligned}
$$

الثشكل (14): خالايا الدم الحمر اء. أَِِف شكل خلايا الدم الحهراء.

$$
\begin{aligned}
& \text { أكبـر قليـلا مـن خلايـا } \\
& \text { الـدم الحمـراء، وهي تُشـبِّهِ } \\
& \text { الخلاِيـا وحيـدات النـوي، } \\
& \text { غير أنَّنـواة الخلية اللمفية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الخلية وحيـدة النـواة. } \\
& \text { تُصنَّف هــنه الخلايــا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { المُتْصصصـة }
\end{aligned}
$$

الشككل (15): أنواع من خلايا الدم الييضاء.

خلايا الدم البيضاء White Blood Cells
تو جد أنواع عِدَّة من خلاءيا الدم البيضاء، تُسِهِم بفاعلية في تعزيز
مناعة الجسم، أنظر الشُكل (15).

الشيكل（16）：آلية تخثئُ الدم． أتتبع خطوات عملية تخثر الدم．

الصفائح الدموية Platelets الصفائح الدموية Platelets أجز اء من خلايا كبيرة جلًا، تنشأ من نخاع العظم، وتفتقر إلى النوى．وهي تمنع فُقد الدم في أثناء إصابة الإنسان بجروح؛
 والخلايا الدموية المختلطة بها؛ بفعل الصفائح الدموية، وبروتينات خاصة

بالبلازما، ومواد أُخرى تمنع فقُد الدم، أنظر الشكل（16）．
Liquid Components of the Blood مُكوِّنات الدم السائلة يُسْمّى المُكوِّن السائل في الدم البلازما Plasma ．والبلازما سائل أصفر
 تحتوي البلازما على مواد ذائبة في الماء، بما نسبته \％5 من حجما حمها الأمثلة على هذه المواد：الغلوكوز، والحموض الأمينة، والألمالحاح المعدنية،

الدموية من التحرُّكُ إلى أجزاء الجسم المُتعلِّدة.

أتحقَّق ：ما مكونات البلازما؟

年定 الدم إمّا بالعاجاج الكيميائي، وإمّا بالعلاج الإشعاعي． أبحث في مصادر المعرفة المناسبة عن أثر كالا العلاجين في عـدد الصفائح الدموية، وفي صحـة الصاب، ثمـ أكتب تقريرًا عن ذلك، ثم أقرؤه أمام زمانيا زميلاتي في الصف．

每 أبحث：يعاني بعض الأشخاص اختالالا وراثئًا يُسْمَى الناعور． أبحث في مصادر المعرفة المناسبة عن مُسُسُات هذا الاختالال، وأبرز
 أكتب تقريرًا عن ذلك، ثمـ أقرؤه أمام زمالئي／زميلاتي في الصف．
 Ventricular septal defect: VSD حالـة قلبيـة يعانيهـا بعـض الأشـخاص منـذ الـولادة، وتتمـُّل في وجـود ثقـب فـي الحاجـز بيـن الططـين الأيمـن والبطـين الأيسـر. أتوقًّع أثـر ذلـك في الـدورة الدمويـة.

لأتحقَّ: ما أهمية وجود حاجز يقسم القلب إلى جهتين؟

تركيب القّلب ووظيفته
Structure and Function of the Heart
القلب Heart عضو يضخ الدم إلى أعضاء الجسم المـختلفة عن

 الأوردة. والحجرتين السفليتين اللتين تُعرَفان بانسم البطينين Ventricles، ويصلهما الدم من الأذينين ، ويضخان الدم عن طريق الشرايين.

 الختلاط الدم المؤكسج بغير المؤكسج. تفصل الصمّا الصمامات الأذينين عن البطينين، وتفصل البطينين عن الشر ايين المتصلة بهما، أنظر الشُكل (17). يتكوَّن القلب من عضلات قلبية تختلف عن العضلات الملساء والعضالات الهيكلية من حيث التركيب والوظيفة. ويُمكِن لعضلة
 حاجة إلى تحفيز الجهاز العصبي، ويكون انتشار جهد الفعل فيها منتظمًا بما يضمن استمرار حياة الشخص. أمّا العضالات الهيكلية والعضالات الملساء فتتطلًّب التنبيه من الجهاز العصبي حتى تنقبض.

تشريح قلب خروف
 تُم الــُد أوتار القَلب.
ه انذل أداة تشريح مناسبة في الشُريـان الرنوي
 طريق هـا الشريان، وانظر داظله إلى يُلاثة جيوب

 مكان اتصاله بالبطين الأيسر ، ثمُ الحِثٌ شُقَّا عن

القتري.
التَّحليل والاستْتَاج:
 2. أفَّر: يكون جـار البطين الأيسر أكثر سمكا من جبار البطين الآيمن. 3. مانوع الآم واتجاه نتله في كلّ من الشُريان الرنوي، والوريد الرنوي؟

المواد والأدوات: قلب خروف، صينية تشريح، مقص، وفافيز، أدوات تشريح، مسطرة. إرشادات السلامهَ:

- اسنتعـل أدوات الششريح بحذر. - غسـل اليدين بالمـاء و الصـابون، أو اسـنـعمال مُعكّم اليديـن قبـل إجر اء التجربــة وبعدها. خطوات الععل: 1 ألاحظ شكل القَلب، ومظهره، ولونـ. 22 الدئد الجانب الأيمن والجانب الائيسر من القلب. 3 (أقلب القلب بحيث يكون الجانب الأيمن على يميني كما لو كان في جسمي، ثم أبحث عن الفتحة الكبيرة في الجزء العلوي من القّلب بجوار الأذين الأيمن، نٌ أضع أداة تشر بح منامبة أسقله ليصل الأذين الأيمن، تُم أحذد موقع الوريد الأجوف العلوي والوريد الرنويني. 4 الحذّد موفع الشُريان الأبهر ، ثُم موقَع الشُريان الرنوئوي.

(8)

3D Printers الطابعات ثلالثية الأبعاد

 تطـوَّرت صناعة الطابعـات ثالثية الأبعـاد 3D Printers 3D، وتعلًّدت استتخداماتها فـي مجـال الرعايـة الصحية؛ إذ تـــــح هذه التقنـــة إنتاج نـمـاذج أوليـة لأدوات طبيـة جديـدة، وصناعـة الأطـر اف الصناعيـة بحسـب الطلـب مـن دون تأخير .
 - : وصناعـة بشـرة واقعية لضحايـا الحروق.

58

(ux)

1. الفكرة الرئيسة: ما أهمية جهاز الدوران في جسم الإنسان؟
2. أُقارِن بين كلٍ مهّا يأتي:

أ. وحيدات النوى والخالايا المتعادلة من حيث الوظيفة.
ب. الخلايا اللمفية وخلايا الدم الحمراء من حيث الوظيفة.
3. أذكر أمثلة على المواد الذائبة في بالزما الدم.
4. أفسّر : لا يستمر نزف الدم من جرح سطحي في إنسان طبيعي مدة طويلة. 5. أذكر اسم كل جزء من أجزاء القلب والأوعية الدموية المُرقّمة من (1) إلى (12) على الرسم الـى الآتي.

الجهاز التنفسي:التركيب والوظيفة

The Respiratory System: Structure and Function

The Respiratory System الجهاز التتفُّسي يتكــَّن الجهـاز التنفُّسـي مـن أعضـاء وتر اكيـب مر تبطـة بها تسـمـح للأكسـجين بالانتقــال مـن الهـواء الجـوي إلـى الـدمّ،
 أنظـر الشـكـل (18).
 بالقصبـة الهوائيـة، فالشـعبتين الهوائيتـــن، فالشـعـيبات الهو ائيـة التـي تتفـرَّع إلـى شـعيبات أصغـر منهــا تنتهـي بالحويصــلات
الهو ائية.


```
الشـكل (19): تركيب التصبة
الهوائبة والشعبتِين الهوائيّن.
```



```
    !!\\\\ بالحرف)
```


الحلــلـل في انتبــاض العضــاتلات الملســاء الموجــودة

 في الجهـــاز التنفـنــي أبحـث في مصـادر المعرفة المناسـبة عـن الاختــالإلات التـي يصــاب

 ،movie maker باستخدام برنامر
 زميــاتي في الصـف.

أفضْ ما التراكيب التي تُفرِز المخاط إضافةً إلى الخلايـا الكأسية؟ مِمَّ يتكوَّن المخاط؟ الدِّ ما عالةق التدخين بكمية المخاط المتكونة؟

The Trachea and Bronchi القصبة الهوائية والشعبتان الهوائيتان

 الغضاريـف Cartilages الموجـودة فـي جلدرانهـا؛ إذ تمنع هـنـه

 الهوائيتــن أيضًا علـى غضاريف، ويعمـل الانقبـاض والانتســاط للعضـالات الملسـاء الموجودة في جــدران القصبة الهو ائية والشــعبتين

 كميـة أكبـر مـن الهـواء، أنظر الشـكل (19). تُبطِّن القصبـة الهو ائيـة والشـعبتين الهوائيتـــن خلايـا طلائيـة على
 تُنـرِزه خلايـا طايئية مُتخصٍصة تُسـمّى الخالايا الكأسـية Goblet Cells

 الأهـداب لتحريـك المخـاط الــذي تَعْالـق فيـه الجســيمات الغريبـة،

ويُبتالَع عـن طريـت الحلق، ليصـل إلـى المعدة،

 تتفـرَّع الشـعبتان الهوائتــان إلـى شـعيبات هوائيـة Bronchioles تتتهي بحويصـالات هوائية
.Alveoli

Alveoli الحويصلات الهوائية
تنتهي الشعيبات الهوائية بالحويصلات الهوائية Alveoli؛ وهي تراكيب يحدث فيها تبادل الغازات بعملية الانتشار، وتُبُطْنّا طبقة من الخلايا الطايئية. لا تحتوي جدران الحويصلات الهو ائية على غضروف،
 بروتين اسمه إيلاستين Elastin، وتساعد الحويصلات الهو ائية على الاتُّساع

 الغازات؛ إذ إنَّ سطو حها مستديرة، واتًّساع الحويصلة الهِّ الهو ائية الناتج من عملية الشهيق يزيد مساحة السطح، أنظر الشُكل (21). لأتحقًّق: أُوضًح المقصود بالحويصلة الهو ائِة.

A
الشـكل (20): صورة مجهرية لأهداب
الخلايا الطلائية الكأسية في القصبة الهوائية.
 الهو ائية للشـــصص البالغ نحو 11cm المخـــاط بسرعــة متو سطــة مقدارهـا الـذي يستغرقه المخــاط في
 الهوائيـة إلى أعلاهــ؟ الـهـ

الشُكرل (21): تركيب
 إلى الرئتين في أثناء الشـهـيـي
 ذلـك في سـرعة انتشـاره في أثنـاء تبـادل الغـازات؟

 لتغــيُرِ ات في أثنــاء عمليتــي

 في مصــادر المعرفــة المناســبـة
 فيلـَّا قصـيرّا عنهـــا باستختخدام برنامــج أعرضـه أمـام زمالأــي/ زميــاتي في الصـف.

من العوامل الأُخرى التي تزيد من كفاءة تبادل الغازات في عملية الانتشار: جدران الحويصلات الهو ائية الرقيقة، وكثافة وجود الشُعيرات الدموية على السطوح الخارجية للحويصلات الهو ائية، وجدران الأوعية الدموية الرقيقة التي تتيح تبادل الغازات ات بسهولة لة

أُفسِر : ما أثر نسب الغازات المختلفة في كلً من هواء الشهيق وهواء الز فير في كفاءة عملية تبادل الغازات؟

الربط بالرياضبات

إذا كان متوسط قُطْر حويصلة هو ائية كروية الشُكل هو بر بر 300، فأُجيب عن الأسئلة الآتية:

- ما مساحة سطح الحويصلة (m² - ما النسبة بين مساحة سطح هذه الحويصلة وحجمها؟ أستعمل المعادلتين الرياضيتين الآتيتين:

$$
\begin{aligned}
& \frac{3}{4} r^{3} \pi=r^{3}=\text { المساحة } \\
& \text { حيث r نصف القُطْر. }
\end{aligned}
$$

تصميم جهاز يحاكي عمل الرئة لإنتاج وقود من الماء

 جهاز يحاكي عمل الرئة لتحويل الماء إلى وقي وقود؛ ما قا قد يُسِهِم في إنتاج وقود هيدرو جيني أكثر بنحو 25 مرَّة من الطريق الـريقة العادية.

 التفاعل الكيميائي في أثناء استخراج الوقود الهيلرو جيني من الماء الهو

نقل الأكسجين وثاتي أكسيد الكربون Transport of Oxygen and Carbon Dioxide يحدث تبـادل للأكسجين وثاني أكسيد الكربــون بيـن الحويصـاتلات الهوائيـة والـدم فـي الشـعيرات الدمويـة المحيطـة بهـا؛ إذ ينتـلـل الــدم الأكســجين من
 والـــدم ثاني أكسـيد الكربـــون والالأكسـجين، ثــم يُنقَل
 ثــم يُطـرَح خارج الجســم.

Transport of Oxygen نقل الأكسجين ينتقل الأكسجين في الدم وهو ذائب في البلازما بما نسبته \%2\% فتط،

 لجزيء واحد من الهيموغلوبين الارتباط بأربعة جزيئات من الأكسجيـن لتكويـن أكسيهيموغلوبين Oxyhemoglobin بحسـب المعادلة الآتية:

$$
\mathrm{Hb}+4 \mathrm{O}_{2} \leftrightharpoons \mathrm{Hb}-\left(\mathrm{O}_{2}\right)_{4}
$$

علمُا أنَّ هذا الارتباط قابل للانعكاس، أنظر الشُكل (23).

> A
> الشـكل (22): تبادل الغازات في الرئتين.

国 على نحو 10^{8} × 2.4 جزيء من

الهيمو غلوبين. إذا حوى جسـم أححد الأشخخـاص 6 6.5×106 لكل الهيموغلوبن في 1 mm 1 سن دمه؟

الشكّل (23): تركيب
جزيء الهيموغلوبين.

درجة الحرارة
Temperature

درجـــات الحــــرارة علـــى تفــكُك الأكـــــيهيموغلوبين.

 الأكـــجـين بالهيموغلوبيـنـن.

تأثير بور
The Bohr Shift

 الهيموغلوبيـن على الارتبـاط
 .The Bohr Shift

 الأكسـيهيموغلوبين كمـا فـي الأنســجن، في حيسن يـزداد ارتباط الأكـــجين بالهيموغنوبين إذا كان الرقـمـ الهيلدروجيني مرتنعـنـا كمـا في الرثئنـ.

الضغط الجزئي للأكسجين
Partial Pressure of Oxygen
 بالأكســجين عنـــد زيــادة الضغنـط الجزنــي للاكســجين ${ }^{\text {tPartial Pressure of Oxygen (}} \mathrm{PO}_{2}$)
 غــاز الأكســجين فـي خليـط الغـازات.

 فإنَّ الأكسيهيموغلوبين يتغكَّك في الأنسجةَ مُحرُرَا الأكسجين.
الثـكل (24): العوامل التي تــاعد على تنكُك جزيه الأكـيـيموغوغبين.

إذا ارتبـط جـزيء الهيموغلوبيـن بأربعـة جزيئـات أكسـجين،
 الجزيئـات، فــإنَّ نســبة إشـبـاعه تنخفـنض. أمّـا إذا كان الأكسـجين

ويتحـرَّر منــه الأكســجين، أنظــر الشــكل (24).
 الأكســيهيموغلوبين.

Transport of Carbon Dioxide نقل ثاني أكسيد الكربون في ما يأتي الحالات التي يُنقَل فيها ثاني أكسيد الكربون من خلايا الجسم إلى الدم: - الذوبان في البلازما Dissolved in Plasma: يُنقَل نحو 7\% من ثاني أكسيد الكربون وهو ذائب في البلازما، أنظر الشُكل (25 أ أ).

。 الارتبـاط بالهيموغلوبــن Bounded to Hemoglobin: يُنقَل مـا نسبته 23\% من ثاني أكسيد الكربون عن طريق الارتباط بالهيموغلوبيبن داخل
 .Carbaminohemoglobin أكسيد الكربـون في الشُعيرات الدمويـة من الكاربامينوهيموغلوبين، ويتقل من خلايـا الدم الحمراء إلى بلازما الــدم، ومنها يتـشر إلى الـى الحويصلات الهوائية، ثم إلى خارج الجسم عن طريق هواء الز الزير،
أنظر الشكل (25/ ب).
 أكسيد الكربون في صورة أيونات الكربونات الهيدروجينية في بلازما الدم؛ إذ يخرج ثاني أكسيد الكربون الذائب في سيتوسول الخايلايا إلى

 أنظر الشُكل (25/ جـ). يحدث هذا التفاعل بيطء شديد، ولكنَّ خلايا
 ويُسرِعه كثيرًا كما في المعادلة الآتية:

$$
\mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3_{(\mathrm{aq})}}
$$

 أيونات الهيدروجين H+ ${ }^{+}$،أيونات الكربونات الهيدرو جينية - ${ }^{-}$كما ${ }^{\text {HCO }}$ في المعادلة الآتية:

$$
\mathrm{H}_{2} \mathrm{CO}_{3_{(a q)}} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{HCO}_{3_{(a q)}^{-}}^{-}
$$

ونظرٌ إلى وجود أيونات الهيدروجين المذابة في سيتوسول خلايا
 : للهيموغلوبين قدرة كبيرة على الارتباط بأيونات الهيدروجين؛ مايُمِّلًّل

监

يعمل جزء من الدماغ على التحكُُم في معدًّل التنفُس من من دون قياس تركيز الأكسجين في الدم، والاكتفاء بقياس تركيز ثاني أكسيد الكربون في الـدم؛ لأنَّ الزيادة الطفيفة لتركيز ثاني أكسيد الكربون في سو ائل الجسم قد تُحدِث ضررًا أكثرِ مقارنةً بما يُحِدِّه الانخفاض الطفيف لتركيز الأكسجين من ضرر بالجسم.

$$
\begin{aligned}
& \text { الشُكل (25): حالات نقل ثاني أكسيد } \\
& \text { الكربون من خلايا الجسم إلى الدم: } \\
& \text { أ- الذـوبان في البلازما. } \\
& \text { ب- الارتباط بالهيموغلوبين. } \\
& \text { ج--أيونات الكربونات الهيلدروجينة. }
\end{aligned}
$$

من ضررها، وبذلك يعمل الهيموغلوبين بوصفه مُنظظًّا؛ إذ يحافظ على بقاء الرقم الهيدروجيني pH في خلايا الدم الحمراء ثار ثابتًا نسبيًا
 :(HHb) Haemoglobinic Acid

$$
\mathrm{Hb}+\mathrm{H}^{+} \rightarrow \mathrm{HHb}
$$

تخـرج أيونـات الكربونـات الهيدروجينيـة السـالبة الشــحنة مـن خلايا

 يُعرَف بعمليـة إزاحة أيونـات الكلور Chloride Shift، أنظر الشــكل (25).
 عند وصول الدم إلى الشعيرات الدموية المحيطة
 الهيلرورجينـــة - ${ }^{-1}$ من بلازمـا الــدم في الشُعيرات الدموية المحيطة بالحويصطات الهو ائية إلى خلايا الدم الحمراء، وترتبط بأيونات الهيدروجين مُكوِّنة حمض الكربونيك الذي يتفكًّك، فينتج مـاء وثاني أكسيــيـد الكربون، ثم يتتقل ثاني أكسيــد الكربون إلى بلازمـا الدم، ومنها إلى الحويصلات الهو ائية، ثم إلى خارج الجسم عن طريق هواء الزفير، أنظر الشُكل (26).

تركيب الرئتين
المواد والأدوات:
رنتا خروف منصلثّان بالقصبة الهو ائية، صنينية تشُريح، مقص، قفافيز، ، مسطرة، أدوات تشريح، كأس زجاجية.
إرشادات السلاهة:

- استعمال أدوات التشُريح بحذر.
- غسل اليدين بالماء و الصابون، أو استَعمال مُعقٌ اليدين قبل إجراء الْتجربة وبعدها.

خطوات العمل:

[2 أقئر حجم الرنتين باستخذام المسطرة.
33 ألاحظ القصبة الهو انئية، وأتفحُصها، ثم أموّن ملاحظاتي.

 66 اتْفُص أئِ غشاء يحيط بالرنتين.
7 إذا كانت الحنجرة لا تزّال منصلة بالرنة، الحاول دفع الهواء في الحنجرة بالضغط عليها بقوة.
 التنئيرات التّي تطرأ عليه.

التحطليل والاستنتّاج:

1. أحف شُكل الرنتين، ومظهر هما، ولونهما.
2. ما الأو عية الدموية الرنيسة التّي تُذلل الرُتينّ، وتُخر ج منهما؟
3. أذكر نو ع الغشاء المحيط بالرنة.
4. أتوقُع: ما التّنيُرات التّي تطرا على نسيج الرنّين عند إسقاطه في الماء؟

Robot Surgery الجر احة بمساعدة الروبوتات
زاد الاعتماد على تقنيات الجراحة الآلية في المستشفيات؛ ذلك
أنَّها تساعد الأطباء على إجراء عمليات جر احية دقيقة ومُعقَّدة. وفيها يتحكَّم الجّرّاحون في الجهاز القُخصَّص للـجر احة عن طريت كاميرا وأذرع ميكانيكية؛ ما يمنحهم رؤية دقيقة جلًّا للعضو المصاب. استُخلِمت هذه التقنية في إزالة بعض الأورام والسرطانات من الرئتين وغيرهما من أعضاء الجسمم. ووفقًا لمستشنىى مايو كلينك، فإنَّ هذه التقنتة الجر احية تمتاز بما يأتي: ه الدقة والتحكُّم المتناهيان. ه الحلُّ من مضاعفات العمليات الجراحية، مشل : الالتهابات، والعدوى. ه ظهور ندبات محدودة في موضع العملية الجراحية بعد انتهائها؛ نظرٌا إلى دقة التقنية المستخلدمة فيها.
يُذكرَ أنَّ انتشار هذا النوع من الجراحة قد يُمهِّد الطريق لااجراء
 بعيدا عن مكان إجر اء العملية.

M

1 ـ الفكرة الرئيسة: ما وظيفة الجهاز التنفسي؟ 2. ما المقصود بكلٍ من إزاحة الكلور، وتأثير بور؟ 3. أُبيّن كيف يعمل الهـخاط والأهداب معأ لحماية المهرات الهو ائية. 4. أُوضٍح التلاؤم بين تركيب الحويصلة الهو ائية ووظيفتها. 5. أكتب معادلة التفاعل المُكوٍ ن لأيونات الكربونات الهيدروجينية. 6. أُوضًاح تأثير الألِاف المرنة في جلران الحويصالات الهو ائية.

الإثراء والتوشُحُع

 للمريـض إعـادة شـحنه، وتُضبَطُ إعداداته باستختخام وحــدات التحكُـُم الخارجية.

$$
\begin{aligned}
& \text { (أبحث في مصادر المعرفة المناسبة عن طرائق وتتنيات أُخرى للحدًا من السمنة باستخدام } \\
& \text { التكنولوجيا، ثمـ أكتب تقريرّا عن ذلك، ثم أقرؤه أمام زمالئي/ زمماتي في الصف. }
\end{aligned}
$$

4. من العطلبات التّي تُحدث في خلايا الـدم الحمراء:
 ب. الانتشار. ج. الانقسام. د. بناء البروتين.
5. الصـف الـذي يصـف جزيء هيمو غلوبيـن وصفًا صحيذـا فـي الجـون الاتتـي هـو:

انكر عدي سن جزيبات الخالخسين ترَبطبـ 4	مبهr ا)	dundur 노는 ,	
8	1	2	I
4	4	2	ب
8	1	4	て
4	4	4	$د$

6. الثنائي الأي يحتوي على دم مؤكسج هو: أ. الأكين الأيسر ، والبطين الايسر. ب. الأنين الأيسر، والبطين الأيمن. جـ. الأنين الأيمن، والبطين الايسر. د. الأنين الأيمن، والبطين الأيمن. 7. الخلايا التّي تكون نواها متعددةّ الفصوص هي: أ. خلاديا الدم الحمراء. ب. الخلايا وحيدات النوى. ج. الخلايا المنعادلة. د. الخلايا اللمفية.

السؤال الأول:
 صحيحة، احدّدها: 1. العاصرة الفؤ ادية تتحكم في:

أ. انتقال الكيموس إلى الأمعاء الدققيقة.
ب. إغـلاق القصبــة الهو ائيــة فــي أثنــاء عليـة البلـع

ج. انتّقــل الطعـام مـن المـريء إلــى المعــة، ومنـع ارتـــداده.

د. حركــة الأمعـاء الغليظـة فــي أثنــاء طــرح
الفضلات.
2. الُُـُدُة التّتي تُفرِز مـادة لتُوفيـر وسط قاعدي فـي

الأمعـاء الدقّقـة هـي:
أ. الكبد.
ب. البنكرياس.
ج. الحوصلة الصفراوية. د. خلايا خاصة في جدار المعذة.
3. تتحـؤل الدهون في الأمعـاء الدققِقَة إلى مسنّحب

> بتأثير :

أ. اللعاب.
ب. العصارة المعدية.
ج. العصارة الصفراوية. د. بيكربونات الصوديوم.

يُسببِ الربو انقَباض العضلات الملساء في الشُعب الهو ائية، ويعمل أحد الأدوية المستّذمة في علاج الربو على انبساط هذه العضلات. أوضُح كيف بِساعد هذا الدواء الأشخاص المصابين بالربو على التُنفّس بسهولة أكثر. السؤال الثالث: أدرس الشُكل الآتي الذي يُييّن أعضاء الجهاز الهضمي، ثم أجيب عن

1. أكتب في المربع المجاور لكل عضو دوره في عملية الهضم، ومدّة بقاء الطعام فيه. 2. إذا مكث طعام داخل القناة الهضمية 28 h، فما النسبة المنؤوية للزمن الذي مكث فيه الطعام داخل الأمعاء الدققِقة من إجمالي مدّة عملية الهض:

أدرس الثُكل التّالي الذي يُبيُن نشاط ابنزيم اليبسين في هضم البروتين، ثم اجيبب عن السوألين الآتيّن: 1. ارثُّب الأنابيب بحسب كمية الهضّ من الأكثر إلى الأقل. 2. ما العو امل التّي أتُّر في هضم البروتين؟

السوال الخامس:

 السوال الساس:

$$
\text { الحمـراء فــي } 1 \text { مــن الـدم؟ }
$$

السؤال السابع:
أفسنّر كلًا ممَا يأتّي:

نفســـ.
ب. وجود الصمامات في الأوردة لا في الشُر ايين.

السوال الثّامن:
يوجد $10^{13} 3$ تُقريبًا من خلايـا الدم الحمر اء في الجسـم. ولكل خليـة دم حمر اء عمر مُحدًّد بـ 120 يومُّا قبـل إز التّها من الدم. فما عدن خلايـا الام الحمراء الجديدة التّي يجب تصنيعها كل ثُانية للحفاظ على العدد الإجمالي ثُابثًا؟

السوال التّاسع:
أتنبّا: لماذا يحدث تبـادل الغـازات بين الهواء والـدم فـي الحويصلات الهو انية، ولا يحدث في القصبة الهو انية؟ السوال العاشر:
تُؤدي إصابة الشخص ببعض الأمر اض إلى إفرازه مخاطلا أكثر لزورجة من مخاط الشخص السليم. أتوقَّع بعض المشُكلات الناجمة عن ذلك.
\leadsto Excretion and Reproduction

تتكرِّن معظم أعضاء الجهاز البوليو الجهاز التناسلي من الطبقة الوسطى في أثناء المرحلة الجنينية،
 كيف يتكامل الجهازان في عملهما؟ لماذا ترتبط دراسة الجهاز البولي والجهاز التناسلي معًا؟

تشريح كُلية خروف

التحليل والاستنتاج:

1. أَصِف شكل الكُلِية الخارجي. 2. أتوقًّع أهميـة النشـــاء السـميك الــني يحيط بالكُلية.
2. أصِف أجـز اءه الكُليـة وتراكيبهـا كما شـاهدتها في المقطع الطولي.
 والنخـاع في الكُليـة.
5.أرسم الكُلية كما شاهدتها في المقطع الطولي.

جهاز الإخراج: التركيب والوظيفة

Excretion System:Structure and Function
الحرسا

أعضاء جهاز الإخراج

Excretion System Organs

تُتِتج الخلايا فضالات هي نواتج ثانوية لعمليات الأيض التي تحدث فيها، وتعمل أعضاء جهاز الإخراج (مشل: الكُليتين، والرئتين، والجلد) على تخليص الجسم من الفضلات، وطرحها

خارجه، أنظر الشُكل (1).
للكُكليتين وظائف عديدة داخل الجسم، مثل: تكوين البول، والحفاظ على تركيز ثابت للسوائل والمواد الذائبة فيها داخل الجسم ضمن مستوياتها الطبيعية، في مايُعرَف بالتنظيم الأسموزي
 والسيطرة على ضغط الدم وحجمه. يعمل أيض الحموض الأمينية في الكبد على تكوُّن الفضالات
 يُحُوِّها الكبد إلى يوريا Urea، وهو مُركَّبَ أقل سُمِيّةً

الشُكل (1):أعضاء جهاز الاخراج في جسم الإنسان.

كالفكرة الرئِسة :
يُسِـــم جهـاز الإخـراج في تخليـص الجـــــم مـن الفضــاتات، ويعمــل على التنظيم الأســموزي للـدم؛ حفاظًا على

الاتـزان الداخلـي للجســم.
كناجانات التُلُمُ :

- أُحلٍد أجزاء جهاز الإخراج، ووظيفة كل جزء منها.
- أَصِف آلية تنقية الدم من الضضلات
النيتروجينية.
- أُبيِن دور الكُليتين في الحفاظ على
الاتز ان الداخلي للجسم.

التنظيم الأسموزي Osmoregulation
Nephron
النفرون
الترشيح الكبيبي

Glomerular Filtration
Reabsorption إعادة الامتصاص الإفراز الأنبوبي Tubular Secretion

أتحقًّق : أذكـر أسمـاء أعضـاء
الإخراج، مُبيِّا دور كِّلٍ منها في
إخراج الفضلات من الجسم.

الشُكل (3): تركيب الوحدة الأنبوية الكُلوية.

تركيب الوحدة الأنبويبة الكُلوية
Structure of the Kidney Tubular Unit
تتألَّٔ الوحدة الأنبوبية الكُلوية (النفرون) من الحويصلة الكُكلوية التي تضم الكبة ومحفظة بومان، ومن الأنبوبة الملتوية القريبة، والتواء التواء هنلي،

أحد أجزاء الوحدة الأنبوبية الكُلوية، أنظر الشُكل (3).
لأتحقَّق: :أُحدًّد الأجزاء التي تتألًّف منها الو حدة الأنبوبية الكُلوية.
 الكُلوية (محفظنة بومـان، والكبـة).

ض

Urine Formation in the Kidneys تكؤن البول في الكُليتين تعمل الكُليتان على تكوين البول عن طريق ثلاث عمليات، هي:

الترشّيح الكيبيي، وإعادة الامتصاص، والإفراز الأنبوبي.
الترشيح الكبيبي Glomerular Filtration

 الذائة فيه (مثل : الغلوكوز والأملاح إلى إلى شبكة الشُعيرات الدموية في الكبة
 الترشّيح الكيبي في الحويصلة الكُلوية التي تتأَّفَ من الكبة ومحفظة
 البلازما، فالا ترشح و وُطُلَّتَ على الموادا التي ترشح اسممالرالراشح الكسيبي،

 معظم السائل في الكبة يتدفَّق داخل محظظة بومان، ثم يتدفَّقَ الر اشُح إلى

بقية أجزاءا الوحدة الأنبوبية الكُلوية، أنظر الشكل (4).
أتحقَّق : أوضًا العوامل التي تعتمد عليها عملية الترشيح الكيبي في الحويصلة الكُلوية.

Reabsorption إعادة الامتصاص يحتـوي الراشـح، إضافـةٌ إلـى اليوريـا، علـى مـواد يحتـاج إليهـا الجسسـم، مـُـل: المـاء، والغلوكـوز، والأمـالاح، والحمهـوض الأمينيـة، وبعـض الفيتامينـات؛ لـنا يعـاد امتصـاص معظـم هــنه المـواد، في ما يُعـرَف بعمليـة إعـادة الامتصـاص Reabsorption.
 من الراشح في أجز اء الوحدة الأنبوبية الكُلوية باستناء أجز اء الحويصلة الكُلوية. يُعاد امتصاص معظم ما يَلزم الجسسم من مو اد عن طريق الأنبوبة الملتوية القريبة، أنظر الشكل (5).

تحلث عملية إعادة امتصاص المواد التيتَلزم الجسمم (مثل: الأملاح، والفيتامينات، والحموض الأمينية، والغلوكوز) إمّاعن طريق النقل النشط، وإمّاعن طريت الانتشار. أمّا عملية إعادة امتصاص الماء فتكون عن طريت الخاصية الأسموزية. الإفراز الأنبوبي Tubular Secretion تُضاف إلى الراشـح بعضى المواد الضــارة أو الز ائـدة على حاجـة الجسـم التي لمم تُفصَل في عملية الترشيح (مشل: :أيونات الهيدروجين،
 المناسبة عـن عقملـة إعـادة اaتصهاص اللـو اد
 أكس تشرئرا عن ذلك أها

ونواتج أيض بعض العقاقير والمواد السامة) عن طريق عملية تُسمّى
 الشُعيرات الدموية المحيطة بالوحدة الأنبوبية الكُلوية إلى داخل الأنبوبة الملتوية القريبة، والأنبوبة الملتوية البعيدة، والقناة الجامعة
عن طريق النقل النشطط، والانتشار.

أتحقًّ: : ما التغيُرات اتلتي تحدث على الر اشح في أثناء مروره في بقية أجز اء الو حدة الأنبوبية الكُلوية؟

نسوزج وحدة أنبوبية كُلوية
bluw

التحليل والاستنتّاج:

داخل الكاس؟؟
2. أُوضْح التَلاؤم بين تُركيب محفظة بومان و عملية

الترشّرح الكيبيبي. 3. اُحذدّ أجزاء الوحدة الأنبوبية الكُوية التّي تحدث فيها عملية إعادة الامنصناص. 4. أتوقُّع: إذا لم تُحدث عملية إعـادة الامتصاص، فماذا يحدث لجسمي؟

المواد والأنوات: سلك قابـل للثنـي طولـه 1.5 ، زرّادية، مقص، خيط صـوف أحمر طولـه 2 س. إرشادات السلاهةً: استعمال الزرّادية بحذر . خطوات العقل: أُصْتم نموذجّا: إ1 أستخدم الززرَادية لقص 30 cm من السلك. 2 2أثني السلك المقصوص من المنتصف، ثُم أُشُكّل منه قطعة مزدوجة على هينّة كأس جوفاء. 33 أثجّت طرفي هذا السـلك عن طريـق البرم أو الجدل باستخذدام الزرّاديـة. 4 أعمل انثناءات في الطرف الحر للسـلك تُماثِل بقية أجزاء الوحدة الأنبوبية الكُلوية. 86 أشكُل من خيط الصوف الأحمر شبكة ماتثة، ثم أضعها داخل الكاس، وأحنظ بطرفيه في يدي. 6 ألُّ الدطرني خبِ الصون حول نورذج الوحدة الالنبوبية الكُوية الذي كؤنت، وأترك الطرف الآخر حرُا.

ب) عند انخغاض الضنط الأسموزي.
(ا) عند ارتناع الضنط الأسموزي.

الشيكل (6):دور الهرمون المانـع لإدرار البـولـول في التنظـِمبم الأسموزي للدم.

التحكُم المرموني في عمل الوحدة الأنبوبية الكُلوية

Hormonal Control of the Kidney Tubular Unit

الأسـموزي للدم.

 فتزيــد نسـبة الاحتفـاظ بالمـاء، وينقـص الضغــط الأسـموزي للــدم،
وينقـص حجــم البـول، ويزيـــد تركيزه.

 للماء، فيُعاد امتصاص ماء أقل من الراشح إلى الدما الدم، ويُتخألَّص من الماء الز ائد؛ فيزيد حجم البول.

لأتحقَّق: أَصِف تأثير الهرمون المانع لإدرار البول ADH في حجم البول وتركيزه عند ارتفاع الضغط الأسموزي للدم.
ألدوستيرون (7): نظام رينين -أنجيوتنسين-
نظام رينين- أنجيوتنسين - ألدوستيرون

Renin-Angiotensin-Aldosterone System
أ. حالة انخفاض ححـم الدم وضغطه

Low Blood Volume and Pressure
يـؤدي انخفاض حجــم اللدم الوارد إلـى الكُلميتين (بعــد فقدان اللـم
 قـرب الكبيبيـة (خالايـا مُتخصٍصهة فـي جــدران الشـريين الـوارد إلـى الكُليـة) علـى إفـراز إنزيــم رينيـن Renin إلـى الــدم مباشــرة. ثــم يبدأ الرينيـن الموجـود فـي بلازمـا الـلدم سلسـلة مـن التفاعــلات لإنتـاج

الأنجيوتنسـين II، أنظـر الشـكـل (7).

 أنجيو تنسـين - ألدوسـتيرون. وتــؤدي زيـادة إعادة امتصـاص أيونات

 لأتحقَّق: أُوضًاح تأثير زيادة إفراز قشرة الغُدُّة الكظرية لهرمون الألدوستيرون في تنظيم حجم الدم وضغطه.

ب. حالة ازدياد حجم الدم وضغطه

High Blood Volume and Pressure

عنـد زيادة حجـم الدم وضغطه تُفـرِز خلايا مُتخصِّصـة في الأذينين العامـل الأذيني المُمــرِّرً للصوديوم Atrial Natriuretic Factor الذئي

 قشـرة الغُــَّة الكظريـة، فتـــل عمليـات إعـادة امتصـاص أيونـات الصوديـوم والمـاء، وبذلـك يقـل حجم الـدم وضغطه. أتحقَّق: أُوضًح تأثير زيادة إفراز الجسم للعامل الأذيني المُلِرٍٍ للصوديوم من الأذينين في حجم الدم وضغطه.

 عنهـا باسـتخخدام برنامـج Power Point، تـم أعرضـه عـلى زمالائي/زميـلاتي في الصن.

 المريض بأنَّا داء السـكري الـكاذب .Diabetes Insipidus
 أعراض مـرض الــكري الحقيتي Diabetes Milletus مصــادر المعرفــة المناسـبـة عـــنـ أعـراض هــذا المـرض، وطر ائتـت

 زميـالاتي في الصـ.

لمـاذا تختلـف كميـة التـي أشـربها، والمجهود البدني الـذي أبذله؟	

الهندسة الحيوية الأمل الجديد لمرضى الكُلى

 الحية، جننّا إلى جنب مع رقائق دقيقة مُتخصٍّصة. تبدأ هذه العملية
 حول رقائق الشريحة بحيث تحاكي الكُ الُّلية الحقيقية، ثم يُثبَّت الجهاز القُهجَّن بيولوجيًّا والصغير الحجم داخل الح جسم المريض .

 المريض المصاب بالفشل الكُلوي لجلسات غسيل الِيل الكُلى، ولا يحتاج إلى الـى كُلية طبيعية من مُتبرِّع، لا سيَّما في ظلٍ انخفاض أعداد المُ المُتبرِّعين.

M

1 ـ الفكرة الرئيسة: ما أعضاء جهاز الإخراج؟
2 ـ أُحلًّد المفهوم الذي لا ينسجم مع بقية المفاهيم في ما يأتي، مُفسِّرًا سبب الختياري إيّاها:

- الكُلية -تحت المهاد- النخامية الأمامية.
- الكبة - محفظة بومان- الأنبوبة الملتوية القريبة.

3ـ أُوضًاح وظائف الكُليتين.
4ـ أُوضٍ دور الجهاز العصبي في تنظيم الضغط الأسموزي للدم.
 كما في الجدول الآتي:

الأجهزة التناسلية: التركيب والوظيفة

 Reproductive Systems:Structure and FunctionReproductive Systems الأجهزة التناسلية
 ومـن المبيضيـن فـي الجهـاز التناسـلي الأنتـوي. وتــؤدي أعضاء الــيا
 الملائمـة لعمليـة التكاثر .
The Male Reproductive System الجهاز التناسلي الذكري

 تهبطان قبل الولادة بشهرين تقريبّا إلى كيس خارج تجو تِيف البطن يُسْمَى كيس الصفن Scrotum. ونظرّا إلى وجود هذا الكيس خارج الـي

لتكوين الحيوانات المنوية، أنظر الشكل (8).

الشـكل (8): الجهاز التناسلي الذكري عند الإنسان.
 يُعَـُدُ التكاثر الجنسـي عملية ضرورية لبقـاء نــــع الإنسـان، ونتــل الصفات الورائــة مـن الآباء إلـى الأبناء .

- أَصِف تركيب الأجهزة الثناسلية.
 الجهاز التناسلي الأنثوي. - أُوضً عمليات التكاثر والتطوُر الجنيني وإفراز الحليب من الأم. - أُوضً أهمية الطرائق المختلفة في تنظيم النسل. - أُبيِن أهمية التقنيات الحديثة الحية في المساعدة على الإخصاب والحمل .

> :
Scrotum كيس الصفن
Epididymis البربن
Semen السائل المنوي
Ovarian Cycle دورة المييض
Uterine Cycle دورة الرحم

Corpus Luteum الجسم الأصفر
الحوصلة البلاستولية الاصر
Implantation الانغراس
Amnion الغشاء الرهلي

Placenta المشيمة

梡 إذا لم تهبط الخصيتان إلى كيس الصفن، فماذا يحلث؟

الشُكل (10): الغُلدُد التناسلية الذكرية وإفرازاتها. V أُوضًح أهمية إفرازات غُنْة البروستات.

Seminiferous Tubules تحتوي الخصية على عدد كبير من الأنيبيبات المنوية التي تتكوّن فيها الحيوانات المنوية، وتُفرِز الخلايا البينية الو اقعة بين الأنيبيبات الدنوية هرمون التستوستيرون الدسؤول عن إظهار الصفات الجنسية الثانوية للذكر.
تنتقل الحيوانات المنوية بعد تكؤنها من الأنيبيات المنوية في الخصية إلى البربخ Epididymis ؛ وهو أنبوب شديد الالتو اء، تنضّ فيه الحيوانات المنوية، فتكتسب القدرة على الحر كة والإخصاب، وتُتختزَن فيه، أنظر الشكل (9).
تغادر بعض الحيو انات المنوية الناضجة البربخ، مُنتِقلة إلى الوعاءين الناقلين Vas Deferens اللذين ينقلان الحيوانات المنوية من الخصيتين، ويلتقيان مع قناة بولية تناسلية مشتركة تُسمّى الإحليل Urethra. وتُفرِز غُدد تناسلية سو ائل لتغذية الحيو انات المنوية وحمايتها في أثناء مرورها بالجهاز التناسلي الأنثوي، أنظر الشكل (10). ومـا إنْ تختلــط الســو ائل التــي تُفرِزهــا الغُــدد التناســلية مـع الحيوانـات المنويـة حتــى يتكـــوّن اللـــائل المنــوي Semen. ينقــل الإحليــل الحيوانــات المنويــة وإفــرازات الغُـــدد التناســـلية إلــى خــارج جســم الذكــر عـن طريــق القضيـبـ.

تُسِهِم إفرازاتها في:

- توفِير وسط قاعدي تتراوح درجة حمو ضته pH بين (7.1) و و (8.1). - تتخفيف لزوجة السائل المنوي لتّسهيل حركة الحيو انات التونيوية.
- تُشرِزان سائلا قلويًا يُسْبِم في معادلة بقابا البول الحمضي في الإحليل وحموضة المهبل.

غُلًّة البروستات Prostate Gland

لأتحقَّق: : أذكر اسم الغُذَّة التي تُسِهِم إفر ازاتها في ما يأتي: - إمداد الحيوان المنوي بالطاقة. - معادلة الحموضة في الإحليل والمهبل.

Female Reproductive System الجهاز التناسلي الأنثوي الجهاز التناسـلي الأنثوي هو المسـؤول عن إنتاج البويضـات، والهرمونات الجنسـية الأنثويـة، مـُـل: الإسـتروجين Estrogen، والبروجسـترون (Progesterone الجنيــن وتغذيته حتـى الولادة.
 Ovaries وتقعـان أسـفل تجويـف البطـن علـى جانبـي الرحــم Uterus

 Vagina فيو جــد في الطرف السـفلي مـن الرحم، ويؤدي إلـى المهبل Cervix
 يخـرج منهـا الوليد في أثنـاء عملية الـولادة، أنظر الشــكل (11).
 بيـن التركيـب والوظيفـة فـي كلِّ ممّـا يأتي: - تركيب الرحم مع وظيفـة الحمل .

- قناة البيض مع التقاط الخلية البيضية الثانوية ونتلها إلى

الرحم.

الشـكل (11): الجهاز
التناسلي الأنووي.

لأتحقَّق: أُحدُد الأعضاء التي
 و FSH في كـلً من الذكر والأنثى.

التحكُم الهرموني في تكوين الجاميتات

Hormonal Control of Gametes Formation

 Gonadotropin Releasing Hormone GnRH
 Follicle Stimulating Hormone FSH

تتكوَّن الجاميتات في جسم الإنسان عن طريق عملية الانقسام المُنصُف، فتتتج جاميتات أحادية المجموعة الكروموسومية (1n) تحوري (23) كروموسومٌا

Spermatogenesis تكوُّن الحيوانات المنوية
 المُنبً للجسسم الأصفر LH الخلايا البينية التي تُسمّى خلاويا لايدج على إفراز هرمون التستوستيرون الذي يعمل معه الهر مون Leydig Cells المُنبُ للحوصلة FSH على تحفيز إنتاج الحيو انات المنوية في الأنيبيبات المنوية. ثم تبدأ الخلايا التناسلية الأولية Primordial Germ Cell (خلايا جذعية تناسلية) بالانقسام انقسامات متساوية عِدَّة، فتتحوّل إلى خلايا

 الوسطى، والذيل، أنظر الشُكل (13/ ب) .

الثـكل (13): مراحل
تكرُّن الحيوانات المنوية،
وتركيب الحيوان الحنوي.

تركيب الحيوان (13/ المنوي):

أُقارِن بين تكوّن الحيوانات المنوية والبويضات الناضجة من حيث عــد الجاميتـات التي تتّج بعد انتهاء المر حلة الثانية من الانقسام المُنصِف.

يحتوي الر أس على النواة، وتحتوي مُمتدِّمة الر أس على جسسميُسْمَى

 أمّا التطعة الوسطى فتحوي أعدادًا كيرة من الميتوكندريا التي تمدُ
 المنوي على السباحة والحركة.

Oogenesis تكوُّن البويضات
تبدأ الخلايا التناسلية الأولية Primordial Germ Cell (خلايا جذعية تناسلية) بالانتسام انتسامات متساوية عِدَّة في المر حلة الجنينية؛ لتكوين خلايا بيضية أُمٌ تتحوَّل إلى خلايا بيضية أولية Primary Oocyte. بعد

التمهيدي الأول حتى تصل الأنثى إلى سن البلوغ، أنظر الشكل (14).

التغيُرات الشهرية في نشاط الجهاز التتاسلي الأنثوي Periodic Changes in Female Reproductive System يحدث في كلً من المبيض والر حم تغيُرات شهرية تتضمَّن تكوين البويضات، وتحضير الرحم استعدادًا لحدوث إخصاب مُمحتمَّل؛ إذ
 دورة المبيض Ovarian Cycle، وفي الوقت نفسه تحدث تغيُرات في الرحم تُسمّى دورة الرحم Uterine Cycle.

Ovarian Cycle دورة المبيض
تشتمل دورة المبيض على ثلاثة أطوار، هي: طور الحوصلة، وطور
الإباضة، وطور الجسم الأصفر.
تستغرق دورتا الرحم والمبيض مدَّة تتر اوح بين (21) يومًا و(35) يومًا،
 أثناء دراسة دورتي الرحم والمبيض في هذا الدرس، أنظر الشُكل (15).

الشنكل (15): التغيُرات
الثشهرية التي تحدث في
الر حم والميض خلا
دورة مدَّتها (28) يومَا.

Follicular Phase طور الحوصلة
تولَد الأنتى وفي مبيضها مئات آلاف من الحوصا ملاتِ الحا الأولية التي تحوي كلُّ منها بويضة أولِية محاطة بخلايا حوصلية تمدُّها بالغذاء.
 لإفراز هرمونات الغُدد التناسلية GnRH؛ تُنبَّه النخامية الأمامية لإفراز

 كلَّما استمر نمو الحوصلة استمر مستوى الإستروجين في الارتفاع، ومِن تَّمَّ يعمل مستوى هرمون الإستروجين المرتن خلال الأيام (12-14) بآلية التغذية

 إتمام نضج الحوصلة وانفجارها. ويبلغ أعلى مستوى للهر مون المُّبُّ للحوصلة Ovulation والهرمون المُُبُّ للجسم الأصفر LH قييل عملية الإباضة FSH Ovulation الإباضة
تححث الإباضة في اليوم الرابع عشر من الدورة تقريبًاء أيْ في اليوم الذي يلي الارتفاع الحاد في مستوى LH، حيث تنطلق الخلية البيضية الثانوية في قناة البيض نحو الرحمى، أنظر الشُكل (16).
الراجعة الإيجابية بين (التعنية التغية

Luteal Phase طور الجسم الأصفر
يتّج من خلايا الحوصلة التي ظلًّت في المبيض تركيب جديد يُسْتى الجسم الأصضر Corpus Luteum الذي يبدأ إفراز هرموني الإستروجين والبروجسترون؛ فيعمالان على نمو بطانة الر حم، وتكتكُّن الأوعية الدموية فية فيه. ويؤدي الاستمرار في إفراز هنين الهرمونِين إلى ارتناع مستوياتهما في الدمّ

 الجسم الأصفر يضمر يُم يتحلًّل، ومستويات الإستروجين والبروجسترون

دورة الرحم Uterine Cycle
يمر الرحم بسلسلة من الأحداث التي تعمل على تهيئة بطانة الرحم لا لاستبال البويضة المُخصَّبَ وتطوُر الجنين، ويُطُلَّ أيضًا على دورة الرحم Uterine Cycle هذه اسم دورة الحيض Menstrual Cycle التي تحدث ودورة المبيض في الوقت نفسـه، تبتظيمـ من الهرمونات التناسلية الأنؤوية
 أُطور، أنظر الشُكل (17).

لا أتحقَّق:
أ . في أينِ أيام دورة الميضِ يُوئرٌ المستوى المرتفع لهرمون الإستروجين في تحت المهاد

بتغذية راجعة إيجابية؟ ب. أُوضًّح تأثير زيـادة إفـراز هرمونـات الغُـدَّة النخامية فـي هــنه الأيـام فـي دورة

المبيض.

$$
\begin{aligned}
& \text { الشـكل (17):أطوار دورة الرحمب. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الرحـمبـي أثنـاء الطـور الإنـرازي. }
\end{aligned}
$$

 البيضيـة الثانويـة بحيوانيـن منويــن، فمـاذا يحـــث؟

Fertilization الإخصاب
تصل أعداد كبيرة من الحيوانات المنوية إلى داخل الجهاز التناسلي الأنثوي، وقد تعيش فيه ملًّة (72) ساعة. وفي اليوم الرابع عشر تقريبًا تحدث عملية الإباضة، وتبدأ الخلية البيضية الثانوية الانتقال إلى الر حم عن طريق قناة البيض، حيث تدخل الحيوانات المنوية في الرحم عن طريق عنق الرحم، ثم تتجه نحو قناة البيض حتى تصلى تصل إلى الخلية البيضية الثانوية في أعلى قناة البيض، حيث يلقّح حيوان منوي واحد الخلية البيضية الثانوية ثم يحدث الإخصاب، أنظر الشُكل (18).

如 تـوأم أو أكثـر بصـورة طبيعيـة بــا نسـبته (\% 1-1) مـن الحـالات. أبحـث في مصـادر المعرفة المناسـبة عـن حـالات ولاتـادة التوائم، ثمـ أكتـب تقريـرًا عنهـا، ثم أقـرؤه أمـام زملانئي/زميـاتياتي في الصف.

تحـاط الخليـة البيضيـة الثانويـة بطبقـة شـفّافة Zona Pellucida، ويُغلِّهـا مـن الخـارج طبقة مـن خلايا حوصليـة تُسـمّى الطبقـة التاجية الشـعاعية Corona Radiata، أنظر الشـكل (19). تحــاول حيوانات منوية

 الثانويـة، وإدخـال نواتـه فـي السـيتوبلازم . وتـؤدي عمليـة الاندمـاج الـاج هــنه إلـى بده سلســلة تفاعـالات تفضـي إلـى تغيير فـي طبيعـة الطبقات
 البلازمـي؛ لمنـع أيٍ حيـوان منـوي آخـر مسن اختر اقها.

الثـكل (19):اختراق الحيوان المنوي الطبقات الخار جية المحيطة بالخلية اليضضية الثانوية.

لا اتحقَّقّت: مـا التغيُرات التي تحـدث للخلية البيضيـة الثانوية منذ لحظة إخصابها حتى انغراسها في بطانة الرحم؟

إنَّ دخول نواة الحيوان المنوي سيتوبالازم الخلية البيضية الثانوية يُحُفًز
 المنويو الخلية البيضية الثانويةأحاديتا المجموعةا الككروموسومية، ويؤديا اندماجهما إلى تكوين البويضة المُخصَّبة، أو الزيجوت Zygote (2n) بعد نحو ساعة من عملية الإخصاب.
 انتسـامات متسـاوية متتاليـة وهي لا تزال في قناة البيـض . وبعد مرور

خلويـة مُكوَّنة مـن (16) خلية تُســـى التوتة Morula.

 أيـامو (9) أيـام مـن عملية الإخصـاب، أنظر الشــكل (20).

الـيكل (20): الأيام الأولى من تطوُّر البويضة المُخصَّة في قناة اليِض، تم انغراسها في بطانة الرحمم.

Embryo Development النطوُر الجنيني يمر الحمل بثلاث مراحل، مذَّة كلٍ منها ثلاثة أشهر، تحدث فئ فيها

تطوُرات مهمة في ما يخصُّ نمو الجنين وتكوُّنه، أنظر الشُكل (21).

First Trimester الثلث الأول هن الحمل

بعـد الانغر اس في الأسبوعين الأول والثاني من التطوُرُ الجنينـي تُجنَّع في
 الداخلية Inner Cell Mass

 سـائل يُسْمْى السـائل الرهلمي (الأمنيوسي) Amniotic Fluid الـــي يحميـي
الجنـــن مـن الصـدمـات، وينــأ خارجـه غـشـاء الكوريون.

 المر حلة، يسـتطيع الجنــن تحر بـك أطـر اف جســهـ،

Second Trimester الثلث الثاني من الحمل

Third Trimester الثلث الثالث من الحمل

يستمر الجنين في النمو والتطُرُ حتى الو لادة بسرعة كبيرة، ولكنّا الرُتين تنضجان متأخرَا،، ولا يُمكِكهما بدء عملية تبادل الغازات إلَا بعد الولا الادة.
الثُكل (21): مراحل تطؤر الجنين.

أتحقُّتق: أُحــدِد وظيفـة كلًّ مـن الغشــاء الرهلـي، وغشـاء الكوريـون.

 يعانيه الجُنين (إنْ وُجِد).

مراحل نمو الجنين
المـواد والأدوات: ورق ممقوّى أبيض، وآخر نو لون مختلف من الحجم نفسـ، مشُرط أو مقصى، مسـطرة،

33 أرئّب الصـور تصــاعدئّا، تُم أضعهـا داخـل
الإطـار.
التحليل والاستنتاج:

الصـور.
2. أُصنُف التَئُرُ ات التّي لاحظتّها على الصور بحسب مراحل نمو الجنين.
3. أتو اصل: أُناقِش زملاني/ زميلالتي في الْنتانجّ التّي توصُّلت إلِيها.

صمـغ، صور موجـات فوق صوتية (من طبيب، أو مـن شبكة الالنترنت) لجنـنـن في مراحل مختلفة، قائمـة تَضـم أجزاء الجسم التّي يُمكِن مشـاهـاتها في آشهـر الحمـل المختلفـة.
خطوات العمل:

11 أصنع إطارًا اللصور عطى النحو الاتتي: أ أ أَص قُطعـة مستطُطلة مـن الورق الأبيض كــا فـي الشُـكل المجـاور.
 للمس تَطيل السـابق، تُم أَّنَّمه إلـى خانـات، تُم أفرَّغها.

 يُمكِن مشــاهتها في أُثـهر الحمـل المختلفـة.

في الأسابيع الأخيرة من نمو الجنين ينقلب وضع جسمه، فيصنح
 عضلات الر حم، ويتسع عنق الر حم استجابةً لهذه الانتباضات؛ ؛ مايُحفُّز
 النذي يساعدعلى زيادة انقباضات العضالات الملساء الماء في جدار الر حمr

 انز لاق الجنين إلى الخارج عن طريق عنق الرحم والمهبلـ المبل تؤدي زيادة ضغط رأس الجنين على عنق الرحم إلى تحفيز إفراز
 ومعلًّلها، ويدفع الجنين إلى خارج الرحمب، أنظر الشكل (22)

السري، فيربط الطبيب هذا الحبل، ثم يقطعه، أنظر الشُكل (23). بعد خروج الوليد تنفصل المئيمة عن جدار الرحم، وتخرج منه مع مع أغشية الجنين؛ نتيجةً لاستمر ار انقباض العضلات الملساء في جدار الرحم. لأتحقًّ: أُوضُح دور هرمون الأوكسيتوسين في تحفيز عملية الولادة.

鲑
 أبحث في مصادر المعرة المناسبة عن تركيب مادة الطَّلّن الصناعي، وآلية

الثـكل (22): مراحل عملية الولادة.

娒

 الحليسب المُجفًّفـ أبحــث في مصــادر المعرفـة المناســبة عــن أسسباب ذلـك، مُميُّا الإيجابيـات والسـلبيات للرضاعـة الطبيعيـة والرضاعـة الصناعيـة، نــم أكتب
 زمالئي/زميــالاتي في الصـن.

تنذية الطفل وإراز الحليب من الأُمُرُ

Baby Feeding and Producing Milk

في أثناء الحمـل تُفـرِز الغُـُّة النخاميـة الأمامية هر مـون الحـليب
البرو لاكتين Prolactin المسـؤول عـن إدرار الحليـب، ويُحفٍّ هرمون الإسـتروجين المشـيمي نمو القنـوات الحليبية في ثــدي الأُمُّ، ويُحفِّز هر مـون البرو جسـترون الــني تُفرِزه المشــيمة تطـوُّر الغُـدد الحليبية،

غيـر أنَّهُ يُثِّط إنتـاج الحليـب طو ال مــُّة الحمل . بعـد الو لادة يتوقَّف تأثير هرمون البرو جسـترون المشــيمي؛ فيبدأ الثـدي إنتـاج الحليـبب، ويحث هرمـون الأوكسيتوسـين الـني تُفرِزه النخاميـة الخلفيـة على خـروج الحليب مسن القنـو ات الحليبية. في أثنـاء عملية الرضاعة يعمـل الرضيع على تحفيز المُسـتقبِلات الميكانيكيـة الموجـودة حـول حلمة الثدي؛ فتُرسِـل إشــارات عصبية إلـى منطقة تحت المهـاد التي تُحفٌّ الغُــُّة النخامية علـى متابعة إنتاج البرو لاكتيـن، علمُـا أنَّ حليـب الأُمٌ فِي الأيـام الأولـى بعــد الـولادة يكـون غنيًا بالأ جسـام المضـادة التي تقـي الرضيع من الأمــراض في الأشـهر الأولى مـن عمره.
 وإفرازه بعد الو لادة.

Contraception تنظيم النسل

وسائل تنظيم النسل Contraception Methods
الوسائل الهرمونية Hormones

 اللُركُبَّة، ولصقـات منـع الحمل .

تحتـوي الوسـائل الكيميائيـة علـى مـواد تقتـــل الحيوانـات المنويـــة، مــل: الجـلـ، والرغـوة، والكريم.
 يمنعان وصـول السـائل المنوي إلى الخلية البيضية الثانوية وإخصابها.
 انغـراس الحوصلـة البلاســوـلية في جـــار الرحــم، وقــد تستمتمر فاعليته سنوات عِلَّة؛ بشُرط مراجعـة الطبيب
 مـن الرحم.

الوسائل الكبيباينة

Chemical Methods

العازل الذكري،

والغطاء المهبلي

اللولب
Intrauterine
Device (IUD)

لأتحقًّت: أُوضًاحـح كيـف يسـتفاد مــن الوســـائل
 النســل عنــد الإنســـان.

$$
\begin{aligned}
& \text { أذر أسماء ببض الوسائل الكيميائية } \\
& \text { المستخدمة في تنظيم النـلـل }
\end{aligned}
$$

> الالخصصل (25/ أ): خطوار الخي.

تُقَّيات المساعدةٌ على الإخصاب Fertilization Assisting Techniques
 الطبي والتكنولوجي؛ فقد أسـهـمت تقنيات المســاعدة على الإخصاب في تشــخيص كيثــر من حـالات العقــم ومعالجتها.
In Vitro Fertilization IVF الإخصاب خارج الجـس تُعَـُُ هــنه التقنية إحدى أكثــر تقنـيات المســاعدة علـى الإخصاب شـيوعًا، ومنهـا: أطفـال الأنابيب، والحقـنـن المـجهري. يتضمَّـن هــنا النـوع من الإخصـاب تنشــيط المبايض لإنتــاج عدد مـن الخلايـا البيضيـة الثانوية، واسـتخر الج الخالايـا البـا البيضيـة الثانوية، واختيــار الحيوانـات المنـويــة، والإخصـاب، ونقــل الجنيـن إلـى الرحــم، أنظـر الشـكل (25/ أ، ب).
عــد استتخدام تقنـــة أطفـال الأنابيـب للإخصـاب خــارج الجســم،

 الحيوانـات المنويـة، أو وجـود ضعف فـي نوعيتهـا، وعدم وجود سـبب واضـح لعـدم إنجـاب الزوجيـن، أنظر الشـكـل (25/ أ).

أمّا عند استخدام تقنية الحقن المحهري Intracytoplasmic Sperm Injection ICSI فيُختـار حيـوان منوي ســليم واحل، ثــمّ يُحقَن مباشـرةً في خليـة بيضية ثانويـة ناضجـة واحدة باسـتعمال إبـرة مجهرية متصلة بمهجهر ذي قوة تكبيـر عالية جذًا.
تُسـتحخدَم هـنه التقنية إذا كانـت الحيو انات المنويـة ضعيفة جدًا، أو كانـت كمية الســائل المنـوي غير كافيـة، أو في حال فشــل المحاو لات السـابقة للإخصاب خارج الجسـم، انْظر الشـكل (25/ ب).

استتخدام الخوارزميات في اختيار الأَحِنَّة
 التخصيب باستخخام المجهر الزمني، والخوارزميات؛ وهي مجموعة من
 فيديو يُمثّل مراحل نمو الجنين، ثم استعمال جهاز الحاسوب لدققارنة هذه المر احل بمراحل النمو النموذ أجل تعزيز قرار اختصاصي علم الأَجِنَّة بخصوص الجّ الجنين الذي سيُنقَل

الشـكل (25/ ب): الحقن
الهجهري.

تجميد البويضات والأَجِّةُ بالتزجِج بـؤدي تجميد البويضـات والأَحِنَّة بيطء إلى تكؤُن بلـورات مـن الجليد

 تــُكُل هـــهـ البلَّبرات؛ الـبوم طريفـة أحـدث هي التجميـد الخاطف أو التزجيـج وفيها تحدث

 سريعًا عنـدالرغبتة في استعمالها.

Intrauterine Insemination IUI التلقيح الصناعي داخل الرحم في أثناء التلقيح الصناعي، يُختار عدد من الحيو انات المنوية السليمة،

 تُستخلَم هذه التقنية إذا كانت الحيوانات المنوية الماتو الطبيعية قليلة الحركة، أو تعاني تشؤُهات خفيفة، أو إذا كانت الزوجة تعاني مشكلة في عنق الرحم تمنع وصول الحيو انات المنوية إلى الخلية البيضية الثانوية. Embryo Cryopreservation تجميد الأَجْنَّة
 تلك الناتجة من عملِات الحقن المجهري لاستخدامها مستقباُد إذا رغب

 ذلك أنَّ استخدام هذه الأَجِنَّة هو أقل كالفة، ولا يتطلُّب جهذًا نفسيًّا وبدنيًا

لا أتحقُّق:

أ ـ لماذا تُختار حيو انات منوية مُعيُنة في تقنية الإخصاب الخارجي؟
ب. ما الحالات التي يتعيًّن فيها استخدام تقنية تجميد الأَّجِنَّ؟؟

الشُكل (26):

 4

ت~ت~

vixy

1 ـ الفكرة الرئيسة: ما أهمية التكاثر؟ 2 2 أدرس الشكل المجاور الذي يُيبٍ الخصائص التركي الـيبية

 3. أ. أملأ الفراغ بما هو مناسب في الجمل الآتية التي تصف الأحداث الشهرية لدورة المبيض:
1 ـ تححث الإباضة في منتصف الدورة الشهُرية؛ فتنطلق الخلية البيضية الثانوية، ويتشكُّل من خلايا الحوصلة المتبقية 2. يُقْرَز هرمون GnRH من
3. يُفِرِز الجسمُ الأصفر كميات من هرمون البروجسترون والإستروجين؛ فيزيدان من سُمُك 4. يعمل الهرمون المُنبُّ للحوصلة على تحفيز المبيض لإتمام نضج

 4. أُقارِن بين كلٍ ممّا يأتي: أ. تقنية التلقيح الصناعي وتقنية الحقن المحهري من حيث عدد الحيوانات المنوية المختارة،

جـ. الغشاء الرهلي وغشاء الكوريون في الجنين من حيث الوظيفة.
5. أدرس الشكل المجاور الذي يُيِين أطوار دورة الرحمه، ثمُ أُجيب عن الـئ الأسئلة الآتية:

 جـ ـ في أيًٍ الأطوار تبدأ بطانة الرحم بالانسلاخ؟

الإثراء والتوسُّع

The Effect of Air Pollution on Kidneys and Fertility

 وأشارت دراسات أُخرى إلى أنَّ تلوُّث الهواء بهذه الجسيمات الدقيقة التي تحوي مواد كيميائية سامة (منها المعادن الثقيلة، مثل: الرصاص، والكادميوم) قد يضرُّ كيرُّا بنوعية الحيوانانات المنوية ونشاطها.

،2.5 PM أبحث في مصادر المعرفة المناسبة عن مصادر التلؤُث بالجسيمات الدقيقة العالثة في الهواء اليواء وكيفية وصولها إلى أجهزة الجسم المختلفة، وتوصيات الجهات اليئية و الصحية المحلية و الدولية للتقليل من

مراجعةّ الوحداة

 عدد من الحيو انات المنوية السليمة، ونقلّها مباشُرة إلى الرحم هي: أ. أطفال الأنابيب. ب. الحقن المجهري. ج. ج. الثّلقّح الصناعني. د. تَجميِ الأحِنُّة.
7. الغُذُةٌ التّي تُحتُوي إفرازاتها على سكر الفركتوز لتّذية الحيو انات المنوية هي: أ. كوبر.
ب. الحوصلة المنوية.
ج. البروستات.
د. تُحت المهاد.
السؤال الثّاني:
أدرس الجدول الآتي الذي يُيئن نراكيز (5) مواد في كلُ من البلازما، والكبة، والبول بوحدة اُجيب عن الأسئلة التي تليه:

		产	\%
0	0.05	0.05	حمرض أمينبة
0	0.1	0.1	غلوكز
$\leq 0.9-3.6$	0.9	0.9	أهلا
0	0	8	بروثين
2	0.02	0.02	يوربا

1. أيُ المواد لم تنتقل من الدم إلى الوحدةً الأنبوبية

الكُلوية؟
2. ما سبب عدم انتقّالها؟ 3. أئُ المواد اعيد امنصاصها بصورة كاملة؟

السؤال الأول:
لكل فقرة من الفقرات الأتية أربع إجابات، واحدة فقط صحيحة، احدّدها:

1. تُوجد المُسْتُقْلاتِ الأسموزية في:

أَـ قُشرة اللُذُّة الكظرِية.
ب. النخامية الخلفية.
ج. النخامية الأمامية.
د. تُحت المهاد.
2. عند زيادة إفراز الهرمون المانع لادرار البول:

أ. يقل حجم البول.
ب. يزدداد حجم البول.
ج. يطل حجم البول ثـابثّا.
د. لا شيء ممَا كُكِر.
3. أيٌّ ممَا يأتي يعمل على إِراز إبنّيم الرينين:

أ. الخلايا قرب الكيبيبية.
ب. الرنتّان.
ج. قُشرة الغُذُّة الكظرية.
د. الكبد.

الأنجيوتتــــين:
أ. الخلايبا قرب الكيبيبة.
ب. الرنتّان.
ج. قشُرة الغُذُةُ الكطرية.
د. الكبد.
5. المسار الصحيح لحيوان منوي في أثناء مغادرتّه

الجسم هو:
أ. من الخصيتّين إلى الإطليل فالبربخ. ب. من الإحليل إلى الو عاء الناقالِ فالخصيتيّن. ج. من البربخ إلى الو عاء الثناقل فالإلـلِّل. د. من الخصيتّين إلى الوعاء الناقّل فالبربخ.
4. يعاد امنصصاص ما نسبنّه 999 من الموانلّ و المواد التّي تُرشُح، ثُم يتكؤن البول من الفضلات والسوائل المنَّقِّة، ويطرح الشُخص في المنّوسط 1.5 L

أ. ما النسبة المنوية لللبول المطرو ح؟
ب. كم لترّا من البول ينتّج يومئّا إذا لم تَددث عملية الامتصصاص؟ 5. أنوقُع: ماذا سيحدث لجسمي إذا لم تُددث عملية إعادة الامتصاص؟ السؤال الثالث: في اليوم الأول من أيام تُدريب إحدى فرق كرة القّم، طُلب إلى كل طلب مندرب، إحضار عينة من البول من أجل تُحليلها، وبعد ظهور النّالتانج في اليوم اللاحق، طُلب إلى الطالبين الاول و الثاني مراجعة الطبيب. وبعد أيام عدة، استُبعِ الطالب الثدالت من الفريق.
 أجيب عن الأسئلة التي تليه:

2athal ${ }^{\text {a }}$	(4)			\%stet	
	(3) $4 \\| \square\}$	(2)	(1)		
(3-0)	(2-0)	(6-3)	لا نوج	خلإيا دم حمراء	
(3-0)	(3-1)	(12-10)	(2-0)	خلإيا دم بيضناء	
لا لوّوج	لا لو	للم	لا لتوجد	بكتِّربا	
لا يوجد	لا يوج	لل يوجد	لا يوجد	برونِّن	
لا	لا بوج	لا لا	يوجد	علوكوز	
لا	توّ جـ	لУ توج	لا لوّوج	مواد مخدرة	

أ ـ ينكَكؤن البول مـن مـاء وأمـلاح. أفسئر سبب وجـود الغلوكـوز فـي
بـول الطالـب الأول.
 القَراءات اعتّمدهـا الطبيـب لهــا التشـــخيص؟
ج. أتوقُّع: كيف طُرِحت المـادة المخـدرةّ في بـول الطالب الثّالث الذي استُّعِع مـن الفريق؟

السؤال الرابع:
أدرس الشُكل الأتي الذي يُئِّن تُظيم الهرمونات لاورة المبيض عند الانثئى، ثُم اُجيب عن الأسلّة التّي تليّه:

أ. أنكر أسماء الاجزاء المشار إليها بالأحرف: (أ)، و(ب)، و(ج).
ب. أذكر أسماء الهرمونات المشار إليها بالارقام: (1)، و(2)، و(3).
ج. أُحذد اسم العملية المشار إليها بالرقم (4).
 فـي أثنــاء الـدورة. السو'ال الخامس: أصنُّف وسـاتل تتظيّم النسل الآتيـة إلـى كيميانيّة، وهرمونيـة، وميكانيكية: الغطـاء المهبلـي، لصقـــات منـع الحمـل، الجلّ.

السؤال السادس:
أُفَّرُ كلًا ممًا بائتي:
أ. وجود الخصينّين في كيس الصفن خارج الجسم شُرط لالنتّاج الحيو انات
المنوية بصورة صحيحة.

ب. ضنطر أس الجنّين في أثناء الو لادة على عنقّ الرحم يُحفُز الولادة.

السؤال السابع:
أدرس الشُكل الآتي الأي يُيِّن عملية الإخصاب وتطؤر الزيجوت في الأسبوع الاول من الإخصـاب، ثُم أجيب عن الأسلّة التّي تلّيه:

أ. أنكر أسماء الأجزاء المشار إلئها بالأرقام: (1)، و(2)، و(3).
ب. أذكر اسم المرحلة المشار إليها بالرقم (4).
ج. ج. ما عدد خلاياها؟ د. أوضتُح كيف نتّمكُن الحوصلـة البلاستُولية مـن الانغراس فـي بطانـة الرحـ.
السؤال الثّامن:
أـ كيف تنكؤن الحيو انات المنوية في الخصيةٌ
ب. ما دور الهرمونات في عملية تكوين الحيوانات المنوية؟ ج. ما التَّئُرات التّي تُطر أ على الجنيّن في الثّلث الثّاني من الحمل؟ السؤال التّاسع:
أوضّح التّلاؤم بين التُركيب والوظيفة لكلُّ ممَا ياتّي:

ب. الرحم، وحمل الجنين، وتغغينّه، وحمايتّه.

السؤال العاشر:
أدرس الشككل الآتي الذي يُئِّن مر احل نُكؤن الجاميتات والإخصاب في جسم الانسان، ثم اُجيب عن الأسنلة التي نلّيه:

أ الحدّد أسماء الخلايا المشار اليليها بالأرقام: (1)، و(4)، و(8).
ب. مـا المجموعـة الكروموسـوميةّ بدلالـلـة (n) فـي الخلايــا المشُـار اليلهـــا
بالارفـــام: (2)، و(4)، و(5)؛

ج. أذكر نو ع الانقسام الذي حدث في الخلية رقم (2).

هـ. أُوضتح مصير الخلية رقم (3)، والخلية رقم (7).
 \title{

}
 \title{

}

الوصحة
-111 Wmmdnitx and Antibiotics

قال تعالى:

andrimeno

اختبار المضادات الحيويةة

المواد والأدوات: أطباق بتري جاهزة فيها آجار، أقر اص ورقية لمضادات حيوية مختلفة، حاضنة، شريط ورقي لاصق، قلم تخططط، قفافيز، ماسحة قطنية معقمة. إرشادات السلامة: غسل اليدين بالماء والصابون جيدًا قبل إجر اه التجربة وبعدها.

خطوات العمل: أُ أُجرِب:

 الأنف، اليدان، مقعد الطالب،

- أضع أربعة أقراص مختلفة من المضادات الحيوية المختلفة، على أن يتوسَّط قرص كل جزء مُرقًّم من الطبق الواحد.
2 2 أثبٌت الغطاء بالطبق باستخدام الشريط الورقي اللاصق.

 4 أُلاحِظ نمو البكتيريا، وأُقارِن بين معدلات نموها على أجزاء الطبق المختلفة، ثم أُدوِّن ماحظاتِاتي.

التحليل والاستنتاج:

1. أستتج سبب وضع طبق بتري مقلوبًا داخل الحاضنة. 2. $37^{\circ} \mathrm{C}$ C أتوقَّع سبب ضبط درجة الحر ارة داخل الحاضنة
2. أُفسّر : لماذا يختلف نمو البكتيريا في أجزاء الطبق المختلفة، وحول أقر اص المضاضادات الـوات الحيوية؟

جهاز المناعة

The Immune System

Immune Response الاستجابة المناعية يتعرَّض جســم الإنسـان لبعـض الكائنـات الدقيقـة والـــواد
 على صحته، ومقاومة مُسـبِّات الأمـراض عن طريق جهـاز المناعة The Immune System منتشــرة في مختلف أنحـاء الجســم، تُعـزِّز الاستجابة المناعيـة (المناعة).
تُصنَّف أعضـاء جهاز المناعة إلى أعضاء لمفية رئيسـة تشــمل
 الطحـال والعُعـد اللمفيـة، أنظر الشــكـل (1).

كالفلرة الرُبِسةه:
تُســـــم الاستجابة المناعـيـة بنوعيهـا؛ الطبيعيـة (غير المُتخصصصة)، والمُكتَسَبة (المُتخصصًصـة) في حماية الجســـم، والمحافظة علىى صحته.
 - أُفسً آلية مقاومة المرض، والمناعة في الجسم.

- أستقصي مدى تأثير الحالة النفسية في صحة الإنسان. :

The Immune System جهاز المناعة Immune Response الاستجابة المناعية Phagocytosis البلعمة

Cellular Response الاستجابة الخلوية Humoral Response الاستجابة السائلة Antibody الجسم المضاد تفاعل الحساسية Allergic Reaction

أكخِ الصدفية مـرض يتعـرَّف فيـه الجهـاز المناعـي بعض مُوُلــدات الضـد الذاتية بوصغها مُولِّدات ضد غير ذاتِية. أُفسًا
 طبيـة يتناولهــا أحيانُــا المريـض الـنـي زُرع عضـو في جسـمه، مثل: الكُليـة، والقلب. وهي تحــُد من نشـــاط جهـاز المناعة؛
 للعضـو المـزروع. لمـاذا يزداد احتمـال إصـابــة المريـض بالسرطـــان بعـد تنــاول هــنـه الأدوية؟

部

 بيضع بعض الأشـخاص لعملية استئصال النُـُـدّة الزعترية أو الطحــال لأسبــاب صحيـة

 عـن ذلـك باستخـدام برنامـح (movie maker زمالائي/زمــلاتي في الصغ.

 التـي تشـمل الاستتجابة المناعيـة الطبيعيـة (غيـر المُتخصٍ المصـة)، والاستتجابة المناعيـة المُكتسَسبة (المُتخصٍصـة)
 مناعـة الجســـم، ويعتمــد عملها علـى مقاومة مُولِّداتـات الضــد الغريبة
التـي تـدخل الجســم.

تحمل خلايا الجسم على سطوحها بروتينات سكرية تُسْمَى مُولِّدات الضد الذاتية Self Antigen، ولا يتسبَّب وجودها في حدوث أليًّ استجابة مناعية ضدها؛ أيْ لا يهاجمها جهاز المناعة في الحالات الطبيعية، في حين يتعرَّف الجسم مُولِّدات الضد التي تدخله، ويَعُدُّها غريبة، وتُسمَى مُولُّدات الضد غير الذاتية Non Self Antigen.

لأتحقَّق: أُوضًا المقصود بالاستجابة المناعية.

الاستجابة المناعية الطبيعية (غير المتخصٍ
Non-Specific Immune Response
تحدث الاستجابة المناعية غير المُتخصٍصة عند محاولة مُسِبِّات الأمر اض دخول الجسمه، أو بعد دخولها فيه، وتكون هذه الايلها الاستجابة غير مُتخصٍ صمة؛ لأنَّا تحارب مُسِبِّات الأمر اض جميعها، ولا يقتصر

عملها على محاربة نوع مُحدَّد منها، أنظر الشكل (2) First Line of Defence خط الدناع الأول يُمكِن للجلد الحدُّ من دخول مُسبُبات الأمر اض بسبب طبقات الخالايا

 الأعضاء، أنظر الشكل (3).

 الأمـراض . أبحــت في دور كلا

 في الصـن.

أبحـ ني مصـادر المعرنة المناسـبة عن الـروتينـات المتمومة
 الدفـاع الثـاني عـن الجــــــــ،
 مناعـة الجســـم والدفــاع عنـه، نـم أُعِـُّ عرضُـا تقديميُـاعـن ذلـك باستخخدام برنامج power point أعرضه أمـام زمالاني/زميلاتي في الصف.

يستطيع المخاط واللعاب والدموع القضاء على مُسبٍّات الأمراض؛ لاحتواء كل منها على إنزيم اللايسوزيـم Lysozyme الذي يعمل على تحلُّل مُسبِات الأهـراضن. وكذلـك يَحجـز المخــاط في الأنـف والقصبة الهو ائية مُسبِّات الأمراض، ثـم تدفع الأهداب مُسيُبات الأمر اض المحتحزة بالمخاط إلى خارج الرئتين، في حين تُحلًّل إفرازات المعدة بعض مُسبًات الأمر اض التي ابتُّعت.

أتحققً: : هِمَّ يتَكوّن خطط الدفاع الأول؟
خط الدفاع الثاني Second Line of Defense يُمكِن للمُسيُبات الأمراض دخول الجسمب من أماكن مختلفة، مشل وجود جرح في الجلد، فيتأهًّب خط الدفاع الثاني للدفاع عن الجسم بآليات مختلفة، تشمل الخالايا الدفاعية، والإنترفيرونات، والاستجابة الالتهابية، والحُقّى.

Defence Cells الخلايا الدفاعية

تتكــُّن الخلايـا الدفاعية من الخالايـا البيضاء الأكولة Phagocytes، والخالايـا القاتالـة الطبيعية Natural Killer Cells التـي توجـد فـي الطحال والـدم، ويُمكِنها تمييز الخلايا المصابة بالفيروسـات والخالايا السـرطانية، أنظـر الشــكل (4). يُمكِـن للخالايـا البيضـاء الأكولـة تغيير شـكلها بسـرعة أكبـر مسن معظم الخلايـا، وهـي تحـوي داخلهـا العديـد مـن عُضيـات الميتو كندريـا التـي تُوفً ATP اللازمـة لعملها، ومن الأمثلـة عليها: الخلايا المتعادلة Neutrophils، والخالايـا وحيـدة النـوى Monocytes.

 الشـكل (5): عملية البلعمة.

الخلايـا المتعادلـة هي خلايا بلعميـة لها نواة مفصصة، توجد بصورة رئيسة في الدم، ولكن يُمكِنها مغادرة الشُعيرات الدمويـة، ودخول

 خلايا أكولة كبيرة Macrophages، وهي أكبر الخلايا البلعمية، وتوجد في
 مُسٍِ الات الأمراض قبل دخولها الدم. أنظر الشُكل (5) الذي يُيِيٍ خطوات عملية البلعمة Phagocytosis. تنتهي عملية البلعمة في الخلايا المتعادلة والخلايا وحيدة النوى بهضم الجسم الغريب أو مُسبٍ المرض المب، وموته، ثم
 الكبيرة فقد يظهر جزء من مُولُد الضد على سطحها؛ مالِّا يؤدي إلى إشهار مُولًد الضد Antigen Presentation، وتُسْتى الخلية المُمُلعِمة الخلية الأكولة
 المناعي الأُخرى من تعرُّف مُولًّد الضد بسهولة الْدُ أكبر؛ ما يعني أنَّ للخالِايا اللُُشْهِرة لمُولُّد الضد دورًا في الاستجابة المناعية المُتخصًصّة أيضًا.

الإنترفيرونات Interferons

تُتنج الخالايا المصابة بالفيروسات بروتينات تُسمّى الإنترفيرونات
Interferons مواد مضادة للفيروسات، تمنع تز ايد أعدادها، والإصابة بها.

الربط بالتار يغ
 (20)

 البكتيريـا البريطاني أليـك إيـرا الك وعالـــمـمالأحياء الدقيقة السويسـري جيـن لينـــنـنمان الإنترفيرونــاتـات وفي مـبعينات التُرن الماضـيا كـــفت أبحـاث أنَّ هــنه المـواد تمنع نــو الــرطـانات ني أجسـام

 مجموعة واسعة مـن الأمـراضا غا غير أنَّأَّاره الجانيبة التي تشـــمل الحُحْى، والتعـب، وانخفاض إنتـاج خلايا الدم حالـت دون استخخدامه لعـالجاج أقل الأمـراض خطـرورة.وني الثمانينـيات

 بعض أنواع سرط طان الـدم (اللوكيميا)،
 واليوم تستنخدم شـركات تصنيع الأدوية تكنولو جيـ الجينات في تصنيع كميـات كبيـرة مـن الإنترفيرونـات لعـالج الأمـراض الفيروسـية، مثل الكبـد الوبائـي C.

الشُكل (6): الاستجابة الالتهابية. ∇

تتتج الاستجابة الالتهابية من إصابة الأنسجة بجرح، أو دخول مُسُسِّات الأمراض في الجسم، فتحدث تغيُر ات فيه بـبـب المواد التي تُطرّح في منطةّة

 فتخرج البلازما من الدم إلى الأنسجة المجاورة مُسُسِّةً انتفاخها. تتشــارك الخلايا الأكولة الكبيـرة والخالايا المتعادلة في الاستـتجابة
 إلى مــكان الإصابة؛ مـا يؤدي إلـى احمـرار منطقـة الإصابـة، وارتناع

درجـة حرارتها، أنظر الشــــلـ (6).

الحُمّى Fever

يُفرِز جهاز المناعة مواد كيميائية تزيد درجة حرارة الجسمه، وتُسبِب الحُحْى. وارتناع درجة حرارة الجسم قد يُيُطُّى (أو يُثُّط) نمو بِض أنواع
مُسبًِات الأمراض.

أتحقَّق: أُوضًّ المقَصود بعملية إشهار مُولًّد الضد.

 مواد مضادة لا\$جسام الغرية من الدم إلى النـيـيج
 والخلايا الأكرلة الكيبرة في الاستجابة الالتهابية.

عند حدوث قطع أو جرح في الجلد تُفرِز Histamine الخلايا الصارية مادة الهـستامين

 تزيد من تدنُّق الدم مي منطقة الإصابة.

تُحْفُز السابنوكابنات انتُسام خلية (T) المساعلة وتمايزيزهاء ما

التي تعمل على تـتُبِ خلابا (B) اللمثية وخلابا (T) القاتلات.

مولُـد الضـد الغريـب، تـم ارتبـاط خلية (T) المــــاعدة بمُولـُـد الضـد المُشـهُ

الاستجابة المناعية المُتخصنصة
The Specific Immune Response تشاركُ خلايادم بيضاءمُتخصٍ صة في الاستجابة المناعية، فيمايُعرَفِباسم الخخايا اللمفية Lymphocytes، ويو جد في جسم الإنسان نوعان منها، هما: الخلايا اللمفية B-lymphocyte (B-الخلايا اللمفية (T) والما (T-lymphocytes. يو جد نوعان من الاستجابة المناعية المُتخصٍّصة، بحسب الخالِايا اللمفية المشاركة فيها، هما: الاستجابة الخلوية، والاستجابة السائلة.

Cellular Response الاستجابة الخلوية
يُطلِّق على الاستجابة المناعية التي تنتج من عمل خلايا (T) اللمفية اسم الاستحابة الخلوية Cellular Response. ومن الأمثلة على خالايا (T) اللمفيـة: (T) المساعدة (T) وخـالايـا (T) القاتلـة Cytotoxic (T) Cells | : والخالايا السرطانية؛ لأتعرَّف آلية عملها، أنظر الشُكلين: (7)، و(8).

الشيكل (7): آلية عمل
خلايا (T) المسـاعدة.

أتحقنّق: أتتـَّع آليـة عمل خلايـا (T) القاتلة.

الشُكل (8):آكية عمل خلايا (T) القاتلة.

يُـهاحِــــم جهـاز المناعـة الخلايا السر طانية لحلحاية الجسم.
 دور عوامـل البيــة والجينات في هذه
 عـن ذلـك باسـتخدام برنامـج زم (power point تـم أعر ضـهـ أمـام زمالئي/زميـلاتي في الصن.

الشُكل (9):آلية عمل خلايا (B) اللمفية.

Humoral Response الاستحابة السائلة

يُطلِّق على الاستجابة المناعية التي تنتج من عمل الخالايا B اللالمفية
 المُفرَزة من خلايا (T) المساعدة النشطة في الخلايا (B) اللمفية، وتُحفِّزها ها (B) على الانقسام لتكوين أعداد كبيرة من النوع نفسه، فتتمايز إلى خلايا ذاكرة، وخالايا بالزمية Plasma Cells.

 البروتين، وتُتِّج هذه الخلايا أجسامًا مضادة. الجسم المضاد Antibody هو بروتين تُتِتجه الخالايا البلازمية؛
 يُبيِن آلية عمل خلايا (B) اللمفية.

أتحقَّق: أُوضًا التالاؤم بين تركيب الخلية البالزمية ووظيفتها. لا تقتل الأجسام المضادة مُسِبِّات الأمر اض، وإنَّما يحدُّ ارتباط هذه الأجسام بمُولِّدات الضد من نشاطها عن طريق تحطيمها أو تثبيطها. لا أتحقًّق : أُوضً المقصود بالجسم المضاد.

خلايا الذاكرة و المنـاعة الطويلة الأمد
Memory Cells and Long-Term Immunity

 الاستجابة المناعية الأولية Primary Immune Response، وقد تظهر
أعراض المرض.

 علـى سـطو حها، وتكون سـرعة إنتـاج الأجســام المضادة كبيـرة؛ لذا تكون الاسـتجابة سـريعة وقوية، وتُســتّى الاسـتجابة المناعية الثانـانوية Secondary Immune Response ، أنظر الشـكل (10).

أُقــارِن بيـن الاسـتجابة المناعيـة الأوليـة والاسـتجابة المناعيـة

 يُستخذدَم فحص عيار Antibody titer الأجسام الضضادي لمعرفة مستوى الأجسام المضادة في الـدم. أبحث في مصـادر المعرفة المناسبة عن آلية عمل هذا الفحص، وأهيتـه، ومُسُوُغـات
 عـن ذلك باستخــدام برنامـج زmovie maker زمائي/زميلاتي في الصف.

$$
\begin{aligned}
& \text { الأفْر من غير المعتـاد أنُ يصاب }
\end{aligned}
$$

أبحث في مصـادر المعرنة
 وخدمات الرعايــة الصحيــة الوقايـة مـن أمراض الحساسـية، الصـ، وأثـر الوراثــة وعوامـل البييـة في الإصابـة بأنواع الحساســبة، نــم أُعِّد عرضَـا تقديميًّا عن ذلك باستتخدام برناهـج power point ـُـم أعرضه أْمـام زمالئي/زميـلاتي في الصف.

تفاعل الحساسيـة Allergic Reaction هو استجابـة مناعيـة لمُولِّد

 ضد مُعيَّن لا يستوجب عادة حدوث استجابة مناعية ضده يُسْتى مُسبٌ الغذائية. وهو لا يكون مُسِبٌّا للمرض بوجه عام عام
 للأجسام المضادة IgE دور فيها؛ إذ تنشأ عند إنتاج الخالايا البالزممية
 ثمارتباط هذه الأجسام المضادة بسطح الخلية الصارية أو القاعدية. وعند
 الشُكل (11)، مُسُبُبًا ظهور أعراض على المصاب، مثل: العطاس، وسيلان

 للتقليل من أعراض الحساسية بطر ائق عِدَّة، منها تُبيط مُسبِبِ الحساسية. لأتحقَّق: أُوضًا أعراض تفاعل الحساسية.

حساسية المواد الغذائية

أُشارت نتانتج دراسة نُشُرت بين عامي (2018م) و(2019م) إلى أنَّ نحو 35 مليون شخص من سكان الولايات
 تنتمثُل أعراض الحساسية من المواد الغذانية في الطفح الجلدي، وانتفاخ اللسان، وصعوبة التنفّن،
 و غير ذلك. أنظر الجدول الأتي الذي يُيئن نتّانج هذه اللراسة، ثم الجيب عن الأسلّة التّي تليه:

1. اكلُّل البيانات: المثُل بيانيّا العلاقة بين نوع المادة المُسئبة للحساسية و عدد المصابين بالملايين. 2. أحنب: ما عدد الأطفال دون سنّ الثامنة عشرة المصابين بحساسية الأغذية؟ 3. أتوقُّ: هل يوجد علاج للحساسية من المواد الغذانيَّهُ أفْسُر إجابتي.

الربط بالطب

Vaccines المطاعيم

تقي المطاعيم الأشخاص من مُسِبٍات الأمراض على نحوٍ آمن وفاعل
 لُمُسِّبات الأمر اض كما هو الحال عند تعرُّض الجسم لمُسِيُبات الأمراض في الوضع الطبيعي.
 الضعيفة، أو على سمومها؛ فإنَّها لا تُسبِبِ المرض
 الجسم من مُسٍِ تعمل مطاعيم mRNA على تكوين بروتين (أو جزء منهن)يُسِبِّب استجابة مناعية داخل جسم الإنسان. وتُعطى المطاعيم غالبّا عن طريق الحقنى، في : حين يُعطى بعض آخر عن طريق الفم.

$$
\begin{aligned}
& \text { المشِر لماذا لا يُمكِن لبعض }
\end{aligned}
$$

الإنفلونزا) توفير مناعة للجسم
مدى الحياة؟

(

1. الفكرة الرئيسة: أُوضًح آلية حدوث تفاعل الحساسية.

2 ـ أُبيِّ دور الخالايا الأكولة الكبيرة والخايا اللايا اللمفية في كلٍ ممّا يأتي: أ ـ الاستجابة السائلة.
ب. الاستجابة الخلوية.
3 ـ أَصِل العملية المناعية بتعريفها في ما يأتي:
ظهور مُولًد الضد على سطح غشاء الخلايا الأكولة الكبيرة؛ ما يسمح للخلايا اللمفية (T) بتعرُّفه بسهولة أكثر . تنشيط جهاز المناعة عند تعرُّض الجسم لِّولِّد الضد أور مرَّة.

ابتلاع الخلية الأكولة الكبيرة الأجسام الغريبة أو الخلايا الكاملة؛ دفاعًا عن جسم الإنسان.
استجابة مناعية تُحِدِثها الأجسام المضادة.

تنشيط جهاز المناعة عند تعرُّض الجسم لمُولًّد الضد
مرَّة أُخرى.

4. أُوضًّح آلية عمل خلايا (B) اللمفية في مقاومة مُسبِّات الأمراض.
5. أُقارِن بين خلايا (T) اللمفية وخلايا (B) اللمفية من حيث مكان الإنتاج، والتمايز.

الكمصاحات الحيويـة

Antibiotics
الدرس

Antibiotics المضادات الحيوية

 تُتِتج هذه المواد بعـض أنواع الكائنـات الحية التـي يُمكِنها قتل
 تتنافس البكتيريـا والفطريـات التـي تعيـش في التربـة علـى

 مـن تصنيـع بعضها.
تعمـل المضـادات الحيويـة عن طريـت تثبيط العمليـات الحيوية
 حيويـة تنفرد بهــا الكائنـات بدائـــة النوى.

للدواء أشـكال غختلفة تُسِهـــ في عــلاج المشــكـالات الصحيـة أبحث في مصادر المعرفة المناسبة عن دور أشكال الدواء المختلفة في علاج المشكالات الصحية، ثمب أُعِدُ فيلحّ) تصيرّا عز ذلك باستخدام برنامج (\% مـم أعرضه أمـام زملاتي / زميلاتي في الصف.

أحْ الحيويــة أنْ تُعالِلـــج بفاعليــة الأعــــراضَ التـــي تُســـيِها الفيروسـات. أَيِّن سـبب ذلـك.

الشــكل (13): :نطـر
Penicillium notatum النـي ينمو على الآَجار.

أبحث: في مصادر المعرفة المناسبة عن آثار الدواء الجانبية،
 أكتب تقريرًا عن ذلك، نـم أقرؤه أمام زملائي/زميلاتي في الصن.

آلمبة العمل	الو	لم
تبيط بناء الجدار الخلوي للخلية	قاتل البكتيريا	Penicillin البنسلين
تحطيم الغشاء البلازمي للخلية	قاتل البكتيريا	Colistin الكولستين
تّبيط تصني البروتين	مُبُط البكتيريا	Streptomycin الستربتومايسين
تيّبط تصنع البروتين	مُبُط البكتيريا	Tetracycline التّراسيكلين

يُطلِّق على المضادات الحيوية التي تقتل البكتيريا اسم قاتلة البكتيريا Bactericidal ، ويُطلَق على تلك التي تُبُّط نمو البكتيريا اسم مُبُبِّات البكتيريا Bacteriostatic، أنظر الجدول (2).

Penicillin البنسلين
في عام 1928م، اكتُشِف أول مضاد حيـوي يُسمْى البنسلين على يد
 أثناء دراسته بكتيريا تُسمّى المُكوُرات العنقودية Staphylococcus، لاحظ مصادفةَ أنَّ أحد أطباق زراعة البكتيريا مُلؤَّة بنطر Penicillium notatum، وأنَّ المنطقة التي تحيط بالفطر خلت من وجود أيٍّ نمو للبكتيريا. وقد

في قتل مجموعة كبيرة من أنواع البكتيريا، أنظر الشكل (13).
 التكنولو جيـا الطبيـة؛ إذ أسـهـم فـي شـفاء أشُــخاص مصابيـن بأمراض

 Broad Spectrum مـن أنـواع البكتير يـا المختلفـة، في حيـن توصَفـ أُخرى بانَّهـا ضيِّقة الطيف Narrow Spectrum؛ لفاعليتهــا فـي القضاء علـى أنـواع مُعيُّنة مـن البكتيريا.

اكتُـف العلمـاء مادة كيميائيـة Allium sativum L في الثوم المطحون
 القضـاء علـى الميكروبـات، مــل: البكتيريـا السـالبة غـرام، والبكتيريـا

 للفيروسـات؛ إذ يعمـل الأليسـين علـى التفاعـل مـع مجموعـة واسـعة من

أتحقَّق : أُوضًح المقصود بالمضاد الحيوي.

نمذجة معلًّل ذوبان الدواء في المعدة

 أنواع من حبوب الدواء: طباشثير ية، وكبسولة هلامية، وترّرص هلاكمي. إرشادات السلامة: تَجنُب استّشاقِ الخَلٌ. خطوات العمل:
 الكؤوس إلى نصفها).
[2] أضع حبَّة دواء واحدة في كل كانس، وألاحظ وفتّ البدء باستخدام ساعة التوّوفيت.
 التحليل والاستنتّاج:

1. أستنتّج: لماذا استُعلثُ الذَلُ لاذابة حبوب الدواء؟
 3. أناقِّش: ماذا أفعل لجعل تأثيّير الدواء أسر عـه

2. أتو اصل: أناقُش زملاني/ زميلاتي في النتّانّج التّي توصُّلت إليها.

تُستخدَم الدضادات الحيوية على نطاق واسع في تربية الماشية في العديد من البلدان؛ إذ تُعطى الحيوانات طعامًا يحما يحوي مضادادات حيوية للوقاية من المرض. في عام 2013م، استُخدِمِ ما مجموعه 131000 طن من المضادات الحيوية، وهو مايُعادِل نحو \% 40 من المضادات الحيوية التي تُتَجَ عالميًّا لهذا الغرض.
 مقاومة لها؛ لذا يجب استعمال هذه المضادات الت فتط لعلاج الأمر اض التي التي تصيب الحيوانات في المَزارع، وعدم إضافتها إلى العلف الذي يُقدَّم لها يوميًّ؛ من أجل زيادة نموها، أو منع إصابتها بالعدوى.
أمـام زمالئي/زمـيـاتي في الصـنـ.

为

.Tetracycline
4. أُبيِّ كيف اكتُشِف البنسلين.

الإثراء والتوسُّع

إنتاج الأكاء الاصططناعي مضادات حيوية جديدا

Artificial Intelligence Yields New Antibiotic

استعمل العلماء نموذجّا يُستى التعلُّم العميت لإنتاج دواء جديد فاعل يقتل العديد من أنواع البكتيريا المقاومة للمضادات الـيا الحيوية؛
 جديد فاعل باستخدام خوارزمية التعلُّم الآليَ وعند تجا تجريبه تمكًّن من القضاء على بعض السالالات المقاومة للمضادات الحيواتي الحيوية المعروفة، وقد جُرٌّب أيضًا على نموذجين من الفُر ان، وتمكَّن من شفائها جميعًا.

 المضادات الحيوية المحتملة التي تقتل البكتيريا باستخدام آليات آليات تختلف عن تلك الموجودة في الأدوية العادية. حلَّد الباحثون في دراستهم الجديدة العديد من المضادياديات الحيوية المقتر حة الواعدة التي خطُطّطوا الاختبارها بصورة مُكئنَّة. وقد رأوا إمكانية استخدام هذا النموذج أيضًا في صنع أديا أدوية جديدة، بناءً على معرفتهم السابقة بالتركيب الكيميائي للأدوية التي يُمكِنِها قتل البكتيريا.

للتكنو لوجيا خوارزمية التعلألم الآلي في إنتا دوراء يُسْمى الهالياليسن Halicin سالاتات البكتيريا.

 مثاومة للمضادات الحيوية، في
 Ciprofloxacin الـيريروفلوكــانـا البكتيريـانـنـهـها (الصفن السنلي).

$$
\begin{aligned}
& \text { أبحـ في مصادر المعرفة المناسبة عن أنواع أُخرى من الأدوية طُورّرت } \\
& \text { باستخدام التكنولوجيا، ثم أكتب تقريرًا عنها، ثم أقرؤه أمام زمانائي/ زميلاتي. }
\end{aligned}
$$

السؤال الثالث:

 بالأمـراض المعديــة.

السؤال الرابع: أوضـح دور مـادة البرفوريـن النـــي تفرز هـا خلايــا القاتلـة، فـي تُحليـل الخلايــا المصابــة بالفيروسـاتـ. السؤال الخامس:
 عند غزو ها الجس: أَ الحئد العملية المُسْمَاةٌ (س) .

د. الحذد الخلابِا المُسمّاة (ع).
(ع)

لكل فقرة من الفقرات الآتية أربع إجابات، واحدة فقط صحيحة، أحدّدها:

1. إحدى الآتية تُعُدُّ من آلبية عمل البنسلين: أ مُتُبُط لصنع بروتيَنات الخلِية.

ب. مُتُبُط لصنع جدار الزلية.
ج. مُنُّطُ لعقلية نسخ المادة الور اثبَة. د. مُثُبُط لوظيفة غُثاء سطح الخلية البكثيرية.
2. تتضيمُـن البلعهـة ابتـلاع الخلايـا الأكولـة أو الخلايـا

(1) عملية تتطلُب طاقة في صورة ATP.
(2) شُكل من أشكال الإدخال الخلوي.
(3) المـواد التّتي تدخل الخليِّة بهـذه الآليـة تُحـاط بفجوة عصاريـة صنغيرة.
العبارة الصحيحة بخصوص آلية البلعمة هي:
أ. (1)، و(2)، و(3).

ب. ب. (1)، و(2) فقَط.
ج. ج. (1)، و(3) فتّط.
د. (2)، و(3) فَّط.
السوال الثاني:
أُفَّر كلاّ ممَا باتّي:
أ. وَصْف منتصف القّرن العشُرين الميلادي بائه عصر
المضادات الحيوية.

ب. احتو اء الخاليا البلاز مبةَ على عدد كبير من الميّوْكندريا والشُبكة الإندوبلاز مية الخشُنة.

الاتزان الداخلي Homeostasis: بقاء عوامل بيئة الجسم الداخلية ثابتة نسبيًّا، مئل: درجة الحر ارة، وكمية
الماء والمواد الُُخرى، ودرجة حموضة الدم، وتركيز الغلوكوز في الدم.
 المادة في غشاء الخلية البلازمي، ثم طرح المادة خارج الخلية.
الإدخال الخلوي Endocytosis: دخول جزيئات كيرة الحجم داخل الخلية في عملية البلعمة؛ إذ تنغمد هذه الجزيئات في غشاء الخلية البلازمي بعد انثنائه، إلى الداخل، وتكوُّن الحويصلات. الاستجابة الخلوية Cellular Immunity: استجابة مناعية تتتج من عمل خلايا (T) اللمفية. الاستجابة السائلة Humoral Response: استجابة مناعية تتتج من عمل خلايا (B) اللمفية.
 استحلاب الدهون Emulsification: تفتيت الدهون إلى قطرات صغيرة بفعل العصارة الصفراوية التي تُصنَع في الكبد، وتُختَزَن في الحوصلة الصفراوية. إعادة الامتصاص Reabsorption: إعادة امتصاص المواد التي تَّلزم الجسم، مئل: الحموض الأمينية، والغلو كوز، ومعظم الأيونات، والماء؛ من الر اشح في تجاويف الوحدة الأنبوبية الكُلوية، ما عدا محغظة بومان والكبة. الإفراز الأنبوبي Tubular Secretion: التخأُص من بعض المواد الضارة أو الزائدة على حاجة الجسمب، عن طريق انتقالها من الدم في الثُعيرات الدموية المحيطة بالوحدة الأنبوبية الكُلوية إلى داخل الأنابيب الملتوية القريبة، والأنابيب الملتوية البعيدة، والتناة الجامعة؛ لإضافتها إلى الراشح. الانغراس Implantation: انزراع الحوصلة البا(ستولية في بطانة الرحم، بإفراز إنزيمات هاضمة تُحلًّل الجدار الداخلي لبطانة الرحم. الأوكسيهيموغلوبين Oxyhemoglobin: مُركَّب ناتج من ارتباط الأكسجين بالهيموغلوبين. (ب)
البربخ Epididymis: أنبوب شديد الالتواء يلتف حول الخصية، وتضّج فيه الحيو انات المنوية، وتُخزَّن فيه.

البلازما Plasma: مُكوَّن سائل في الدم يُمئً نحو \%55 من حجم الدم الكلي، وهو سائل أصفر فاتح اللون يتكوَّن أساسُا من الماء.

البلعمة Phagocytosis: عملية سريعة تَعْمد إليها الخلايا البلعمية (مثل الخلايا الأكولة الكبيرة) عندما
 إلى السيتوبلازم، وتهضمها بالإنزيمات. (ت)
تأثير بور The Bohr Shift: تأثير درجة الحموضة في قدرة الهيموغلوبين على الارتباط بالأكسجين. الترشيح الكبيبي Glomerular Filtration: انتقال الماء والمواد الصغيرة الحجم الذائبة فيه من الدم إلى شبكة الشعيرات الدموية في الكبة.
التغذية الراجعة السلبية Negative Feedback: استجابة الجسم للمُمُنِّات التي تُغيرٍ عوامل البيئة الداخلية؛ بإحداث تأثير مضاد لها، للحفاظ على بقاء هذه العوامل ثابتة نسبيًّا ضمن معدًّاتها الطبيعية. تفاعل الحساسية Allergic Reaction: استجابـة مناعيـة مُبـالَغ فيها لمُولًّد ضــد مُعيًّن يُسـَّى مُسبًٍ
 التنظيم الأسموزي Osmoregulation: عمليات حيوية تحافظ على تركيز ثابت للسوائل والمواد الذائبة فيها ضمن مستوياتها الطبيعية داخل الجسم.

الجسم الأصفر Corpus Luteum: تركيب يتكوَّن من خلايا الحوصلة المتبقيّة في المبيض بعد حلوث الإباضة.

الجسم المضاد Antibody: بروتين تُتِجه الخلايا البلازمية استجابةً لو جود مُولِّد ضد مُحلَّد؛ من أجل تشيطه. جهاز المناعة The Immune System: جهاز يتكوَّن من مجموعة من الأعضاء والأنسجة المنتشرة في مختلف أنحاء الجسم التي تُعزُز الاستجابة المناعية (المناعة). جُهدالر احة Resting Potential: فرق الجُهد بين داخل الخلية العصبية وخار جها في كثير من العصبونات، ويبلغ (70 mV-) تقريبًا.
جُهد الفعل Action Potential: إشارات كهربائية (سيالات عصبية) ينقلها الجهاز العصبي.
(ح)
الحبل السري Umbilical Cord: تركيب يصل بين الجنين والمشيمة.
الحر كة الدودية Peristalsis: مو جة من الانقباضات المتتالية للعضلات الملساء في جدار القناة الهضمية
تمنحها قوةً لدفع الطعام في أجزائها.
الحوصلة البلاستولية Blastocyst: كرة مُجوَّفة مملوءة بسائل، وهي تُمئُ إحدى مراحل تطوُر الجنين.
(د)
دورة الرحم Uterine Cycle: سلسلة من الأحداث الشهرية التي يمر بها الرحم؟؛ من أجل إعداده لاستقبال البويضة المُخصَّبة، وهي تُسمّى أيضًا دورة الحيض. دورة المبيض Ovarian Cycle: مجموعة التغيُر ات الشهرية التي تحدث في المبيض لإنتاج خلية بيضية

ثانوية وإطاققها.
(س)
اللائل المنوي Semen: سائل يُتَج في الجهاز التناسلي الذكري، ويحتوي على الحيو انات المنوية، وإفرازات الغُلد التناسلية.
(ص)
الصفائح الدموية Platelets: أجزاء من خلايا كبيرة جدُّا تنشأ من نخاع العظمه، وتفتقر إلى وجود النوى. الصمام البوابي Pyloric Valve: صمام يقع بين المعدة والأمعاء الدقيقة، ويفتح عند وصول الكيموس إلى الأمعاء الدقيقة.
(ض)
الضغط الجزئي للأكسجين Partial Pressure of Oxygen (PO $)$ (C)
خليط الغازات.
(ع)
العاصرة الفؤادية Cardiac Sphincter Muscle: عضلة على شكل حلقة تتححكَّم في انتقال الطعام من المريء إلى المعدة، وتمنع ارتداده.
العصبونات الحر كية Motor Neurons: خلايا عصبية تنقل جُهد الفعل من الجهاز العصبي المركزي إلى العضالات، أو إلى الخلايا المستجيبة الأُخرى.

العصبونات الحسِّية Sensory Neurons: خلايا عصبية تنقل جُهد الفعل من المُستقبِبلات الحسٍّية إلى الجهاز العصبي المركزي. العصبونات الموصلة Interneurons: عصبونات توجد داخل الجهاز العصبي المركزي، وتعمل بوصفها حلقة وصل بين الأنواع الأخخرى من العصبونات، مثل: العصبونات الحسِّة، والعصبونات الحركية. (ε)
الغُدًة الصماء Endocrine Gland: غُدَّة تُطلِق إفرازاتها مباشرة في الدم. الغشاء الرهلي Amnion: غشاء ينشأ حول الجنين مباشرة، ويحتوي على سائل يُسمّى السائل الرهلي (الأمنيوسي)، وهو يحمي الجنين من الصدمات.

قاتلة البكتيريا Bactericidal: مضادات حيوية تقتل البكتيريا. (5)

الكاربامينوهيموغلوبيـن Carbaminohemoglobin: مُركَّب ناتـج مـن ارتبـاط ثانـي أكســيد الكربـون بالهيموغلوبيـن.
كيس الصفن Scrotum: كيس توجد فيه الخصيتان خارج تجويف البطن، ويُوفًر درجة الحرارة المناسبة لتكوين الحيوانات المنوية. الكيموس Chyme: سائل كثيف القوام يتشُكَّل تدريجيًّا مع استمرار عملية الهضم في المعدة، ويتحرًّك في اتجاه الأمعاء الدقيقة.

(p)

مُبُّط البكتيريا Bacteriostatic: مضادات حيوية ثُثِّط نمو البكتيريا.
المُستقبِلات الحسًّة Sensory Receptors: تراكيب مُتخصٍ تُصة تستقبل المُنُّهاتات، ثُم تُحوُّلها إلى سيالات عصبية. وهي تُصنَّف بحسب نوع المُحفًّز الذي تستجيب له.
المشيمة Placenta: عضو مُتخصصّ ينشأ من خمالات الكوريون، ويسمح بتغنية الجنين، وطرح الفضالات
من دمه إلى دم الأُمً، وتبادل الغازات مع دمها.

المضادات الحيوية Antibiotics: مواد تُتتِجها الكائنات الحية، وتعمل على قتل كائنات دقيقة، أو منع

مُولِّدات الضد Antigens: جزيئات كبيرة تتكوَّن من بروتينات، أو بروتينات سكرية، أو بروتينات دهنية،
 (ن)
النفرون Nephron: وحدات أنبوبية كُلوية توجد في كل كُلية، ويبلغ عددها نحو مليون وحدة. النقل الوثبي Saltatory Conduction: انتقال جهد الفعل من عقدة رانفيير إلى أُخرى. (ه)
الهرمون Hormone: ناقل كيميائي يتنقل في الدم، ويُحدِث تأثير ات في أعضاء أُخرى من الجسمـ تُسمّى الأعضاء المستهدفة Target Organs. الهيموغلوبين Hemoglobin: بروتين يتكوًّن من أربع سلاسل عديد البتيد، تحتوي كلٌّ منها على مجموعة هيم واحدة.

1. Boyle, M., et al., Collins advanced Science-biology, Collins, 2017.
2. Campbell, N., A., Urry, L., A., Cain, M., 1., Wasserman, S., Minorsky, P., V., Reece, J., B., Biology a global approach, 11 th edition, Pearson education, INC., Boston, MASS., USA, 2018.
3. Miller.K.R., Miller \& Levine, biology, Pearson. 2010.
4. Martindill, D., Smyth, M., Smith, M., Cambridge International AS \& A Level Biology, Collins, 2020
5. Hacker, F. Neville \& Moore's, Essentials of Obstetrics \& Gynecology, sixth edition.
6. David M., Michael S.and Mike S. Cambridge International AS \& A Level Biology. Students' Book. Harper Collins Publishers Limited 2020
7. Jackie,C. Sue, K. , Mike,S.m and Gareth, P. Cambridge IGCSE Biology. Harper Collins Publishers Limited 2014.
8. Khader, Y., Batieha, A., Ajlouni, H., El-Khateeb, M. \& Ajlouni, K. (2008). Obesity in Jordan: Prevalence, Associated Factors, Comorbidities, and Change in Prevalence over Ten Years. Metabolic Syndroms and Related Disorders, Volume 6, Number 2.

المواقع الإلكترونية

1. https://www.mayoclinic.org/ar/tests-procedures/in-vitro-fertilization/about/pac-20384716
2. https://www.webmd.com/diet/news/20150116/obesity-maestro-system\#1
3. http://www.perinatal.nhs.uk/car/anomaly/renal/renal.htm
4. https://www.mayoclinic.org/ar/diseases-conditions/endocarditis/symptoms-causes/syc20352576
5. https://www.glowm.com/pdf/Book-InTech-From\ Preconception\ to\ Post-partum-Ch08-CC\ BY.pdf
6. Ihttps://www.medicalnewstoday.com/articles/314662
7. https://www.med.umich.edu/lrc/coursepages/ml/embryology/embryo/11urinarysystem. htm
8. https://www.pnas.org/content/118/7/e2020575118

Collins

