

التنبؤ بالتفاعلات

يمكن التنبؤ بإمكانية حدوث تفاعلات التأكسد والاختزال عن طريق حساب (E^0) للتفاعل: فإذا كانت قيمـة E^0 موجبة دل ذلك على إمكانية حدوث التفاعل تلقائياً. أما إذا كانت قيمة (E^0) سالبة فالتفاعل لا يحدث تلقائياً، ويمكن حدوثه إذا أعطي طاقة تزيد عن قيمة (E^0) المحسوبة.

مثال (1):ي

وضح مدى إمكانية حدوث التفاعل التالي في الظروف المعيارية:

$$Br_2 + 2Cl \rightarrow 2Br + Cl_2$$

علماً بأن:

$$Cl_2 + 2e \rightarrow 2Cl$$
 $E^0 = +1,36$ فولت $Br_2 + 2e \rightarrow 2Br$ $E^0 = +1,09$

الحل:

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الكلور تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالي:

$$E^0 = \frac{E^0}{|E^0|} = \frac{E^0$$

وبما أن (E^0) للتفاعل له قيمة سالبة فهذا يعني أن التفاعل لا يحدث بشكل تلقائي، أي لا يمكن تحضير Cl_2 بأكسدة أيونات Cl_1) بوساطة البروم Cl_2).

1/9

مثال (2):

(Fe) وفق المعادلة التالية: (Fe) اختزال أيون الحديد (Fe $^{3+}$) إلى (Fe $^{2+}$) وفق المعادلة التالية: Fe + 2Fe $^{3+}$ \rightarrow 3Fe $^{2+}$

علماً بأن:

فولت
$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
 $E^{0} = +0,77$ فولت $Fe^{2+} + 2e^{-} \rightarrow Fe$ فولت $E^{0} = -0,44$

الحل:

 (E^0) نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الحديد (Fe) تأكسد (مصعد)، ويحسب نلاحظ من التفاعل كالتالى:

$$E^{0} - \frac{1}{|E^{0}|} = \frac{1$$

بما أن قيمة ${ t E}^0$ للتفاعل موجبة، فالتفاعل قابل للحدوث.

مثال (3):

هل يمكن تحضير (I_2) بأكسدة أيونات (I_1) بوساطة (Cl_2) كعامل مؤكسد؟ علماً بأن:

$$Cl_{2} + 2e^{-} \rightarrow 2Cl$$
 $E^{0} = +1,36$ فولت $E^{0} = +0,54$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

$$l^- \rightarrow l_2 \quad Cl_2 +$$

2/9

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن اليود تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالى:

$$E^0 - \frac{1}{|E^0|} = \frac{1}{|E$$

وبما أن $({ t E}^0)$ للتفاعل له قيمة موجبة فهذا يعني أن التفاعل يحدث بصورة تلقائية.

مثال (4):

هل يمكن حفظ محلول كبريتات الكوبالت في وعاء من القصدير؟ علماً بأن:

$$Co \rightarrow Co^{2+} + 2e^{-}$$
 $E^{0} = -0.28$ فولت $Sn \rightarrow Sn^{2+} + 2e^{-}$ $E^{0} = -0.14$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

$$CoSO_4 + Sn \rightarrow ??$$

وهذا من نوع تفاعلات الإحلال الأحادي، وعليه يمكن إكمال التفاعل على النحو التالي:

$$CoSO_4 + Sn \rightarrow Co + SnSO_4$$

 (E^0) نلاحظ من التفاعل المراد التنبؤ بحدوثه أن القصدير تأكسد (مصعد)، ويحسب نلاحظ من التفاعل كالتالي:

3/9

$$E^0 = \frac{1}{1}$$
 والمهاعل $E^0 = \frac{1}{1}$ والمهاعل $E^0 = \frac{1}{1}$

منها

وبما أن (E^0) للتفاعل له قيمة سالبة فهذا يعني أن التفاعل لا يحدث بصورة تلقائية؛ إذاً يمكن حفظ المحلول.

مثال (5):

هل يمكن تحريك محلول كبريتات النحاس بملعقة من النيكل؟

علماً بأن:

فولت
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$
 $E^{0} = +0,34$ فولت $Ni \rightarrow Ni^{2+} + 2e^{-}$ $E^{0} = -0,23$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

$$CuSO_4 + Ni \rightarrow ??$$

وهذا من نوع تفاعلات الإحلال الأحادي، وعليه يمكن إكمال التفاعل على النحو التالي:

$$NiSO_4 + Cu \rightarrow Ni + CuSO_4$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن النيكل تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالى:

$$E^0 = \frac{1}{|E^0|} = \frac{1}{|E$$

وبما أن (E^0) للتفاعل له قيمة موجبة فهذا يعني أن التفاعل يحدث بصورة تلقائية؛ إذاً لا يمكن تحريك المحلول.

مثال (6):

في أي الوعائين يمكن حفظ محلول كبريتات القصدير: وعاء من الكوبالت أم وعاء من الفضة؟

علماً بأن:

فولت
$$Co o Co^{2+} + 2e^{-}$$
 $E^{0} = -0.28$ فولت $Sn o Sn^{2+} + 2e^{-}$ $E^{0} = -0.14$ فولت $Ag o Ag^{+} + e^{-}$ $E^{0} = +0.80$

الحل:

أُولاً: (وعاء الكوبالت) بكتابة معادلة مبدئية من نص السؤال:

$$SnSO_4 + Co \rightarrow ??$$

وهذا من نوع تفاعلات الإحلال الأحادي، وعليه يمكن إكمال التفاعل على النحو التالي:

$$CoSO_4 + Sn \rightarrow Co + SnSO_4$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الكوبالت تأكسد (مصعد)، ويحسب $({ t E}^0)$ للتفاعل كالتالي:

$$E^0 = \frac{E^0}{|E^0|} = \frac{E^0}{|E^0|} = \frac{E^0}{|E^0|}$$
 و اختزال (المهبط) $E^0 = \frac{E^0}{|E^0|} = \frac{E^0}{|E^0|}$ وولت $E^0 = \frac{E^0}{|E^0|} = \frac{E^0}{|E^0|}$

وبما أن (${ t E}^0$) للتفاعل له قيمة موجبة فهذا يعني أن التفاعل يحدث بصورة تلقائية؛ إذاً لا يمكن حفظ المحلول.

ثانياً: (وعاء الفضة) بكتابة معادلة مبدئية من نص السؤال:

$$SnSO_4 + Ag \rightarrow ??$$

وهذا من نوع تفاعلات الإحلال الأحادي، وعليه يمكن إكمال التفاعل على النحو التالي:

$$Ag_2SO_4 + Sn \rightarrow SnSO_4 + 2Ag$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الفضة تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالي:

$$E^0 = \frac{E^0}{|E^0|} = E^0$$
 اختزال (المهبط) $E^0 = \frac{E^0}{|E^0|} = E^0$ اختزال (المهبط) $E^0 = \frac{E^0}{|E^0|} = E^0$ اختزال (الفصدير) $E^0 = \frac{E^0}{|E^0|} = 0.94$

وبما أن (E^0) للتفاعل له قيمة سالبة فهذا يعني أن التفاعل لا يحدث بصورة تلقائية؛ إذاً يمكن حفظ المحلول.

مثال (7):

هل يتفاعل سلك من النحاس مع محلول حمض الهيدروكلوريك HCl المخفف؟ علماً بأن:

فولت
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$
 $E^{0} = +0.34$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

$$Cu + HCl \rightarrow ??$$

وهذا من نوع تفاعلات الإحلال الأحادي، وعليه يمكن إكمال التفاعل على النحو التالي:

$$CuCl_2 + H_2 \rightarrow Cu + 2HCl$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن النحاس تأكسد (مصعد)، ويحسب (${ t E}^0$) للتفاعل كالتالي:

$$E^0 = \frac{E^0}{|E^0|} = \frac{E^0$$

Lo.

وبما أن (E^0) للتفاعل له قيمة سالبة فهذا يعني أن التفاعل لا يحدث بصورة تلقائية.

مثال (8):

هل تذوب قطعة من الخارصين مع محلول حمض الهيدروكلوريك HCl المخفف؟ علماً بأن:

فولت
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
 $E^{0} = -0.76$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

وهذا من نوع تفاعلات الإحلال الأحادي، وعليه يمكن إكمال التفاعل على النحو التالي:

$$ZnCl_2 + H_2 \rightarrow Zn + 2HCl$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الخارصين تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالي:

$$E^0 = \frac{E^0}{|e_{ij}|} = \frac{E^$$

وبما أن (E^0) للتفاعل له قيمة موجبة فهذا يعني أن التفاعل يحدث بصورة تلقائية.

7/9

مثال (9):

هل يمكن لأيونات الكادميوم +Cd² أن تؤكسد ذرات الرصاص Pb ؟ علماً بأن:

فولت
$$Cd \rightarrow Cd^{2+} + 2e^{-}$$
 $E^{0} = -0.40$ فولت $Pb \rightarrow Pb^{2+} + 2e^{-}$ $E^{0} = -0.13$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

$$Cd^{2+} + Pb \rightarrow ??$$

ويمكن إكمال التفاعل بتحويل الأيونات إلى ذرات، والذرات إلى أيونات على النحو التالي:

$$Pb^{2+} + Cd \rightarrow Pb + Cd^{2+}$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الرصاص تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالي:

$$E^0 = \frac{1}{|E^0|} = \frac{1}{|E$$

وبما أن (${ t E}^0$) للتفاعل له قيمة سالبة فهذا يعني أن التفاعل لا يحدث بصورة تلقائية.

مثال (10):

هل يمكن لذرات الحديد Fe أن تختزل أيونات الزئبق +Hg²⁺ ؟

علماً بأن:

فولت
$$Fe \rightarrow Fe^{2+} + 2e^{-}$$
 $E^{0} = -0.44$ فولت $Hg \rightarrow Hg^{2+} + 2e^{-}$ $E^{0} = +0.85$

الحل:

بكتابة معادلة مبدئية من نص السؤال:

Fe +
$$Hg^{2+} \rightarrow ??$$

ويمكن إكمال التفاعل بتحويل الأيونات إلى ذرات، والذرات إلى أيونات على النحو التالي:

$$Hg + Fe^{2+} \rightarrow Hg^{2+} + Fe$$

نلاحظ من التفاعل المراد التنبؤ بحدوثه أن الحديد تأكسد (مصعد)، ويحسب (E^0) للتفاعل كالتالي:

$$E^0 - \frac{1}{|E^0|} = \frac{1}{|E$$

وبما أن (E^0) للتفاعل له قيمة موجبة فهذا يعني أن التفاعل يحدث بصورة تلقائية.

9/9