حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

الاقترانات اللوغاريتمية

الاقترانات اللوغاريتمية

(a) log2 16 = 4  → 24 = 16

(b) log7 7 = 1  → 71 = 7

(c) log3 (begin mathsize 18px style 1 over 243 end style) = -5  → 3-5 = begin mathsize 18px style 1 over 243 end style

(d) log9 1 = 0  → 90 =


الاقترانات اللوغاريتمية

(a) 73 = 343  → log7 343 = 3

(b) begin mathsize 18px style 49 to the power of 1 half end exponent end style= 7  → log49 7 = begin mathsize 18px style 1 half end style

(c) (2)-5 = begin mathsize 18px style 1 over 32 end style → log2 begin mathsize 18px style 1 over 32 end style = -5

(d) 170 = 1  → log17 1 = 0


الاقترانات اللوغاريتمية

(a)

log5 25 = y

5y = 25

5y = 52

y = 2

إذن: log5 25 = 2

(b)

Log8 begin mathsize 18px style square root of 8 end style = y

8y = begin mathsize 18px style square root of 8 end style

8y = begin mathsize 18px style 8 to the power of 1 half end exponent end style

y = begin mathsize 18px style 1 half end style

إذن: begin mathsize 18px style 1 half end style log8 begin mathsize 18px style square root of 8 end style =

(c)

log81 9 = y

81y = 9

92y = 91

2y = 1

y = begin mathsize 18px style 1 half end style

إذن: log81 9 =

(d)

log3 begin mathsize 18px style 1 over 27 end style = y

3y = begin mathsize 18px style 1 over 27 end style

3y = begin mathsize 18px style 1 over 3 cubed end style

3y = 3-3

y = -3

إذن: log3 begin mathsize 18px style 1 over 27 end style = -3


الاقترانات اللوغاريتمية

(a) log2 1 = 0

(b) log32 begin mathsize 18px style square root of 32 end style = log32 begin mathsize 18px style 32 to the power of 1 half end exponent end style = begin mathsize 18px style 1 half end style

(c) log9 9 = 1

(d) 8log8 13 = 13


الاقترانات اللوغاريتمية

(a)

مجال هذا الاقتران هو مجموعة الأعداد الحقيقية الموجبة R+ أي (0 , begin mathsize 20px style integral subscript negative 1 end subscript superscript 3 f left parenthesis x right parenthesis d x end style).

مدى هذا الاقتران هو مجموعة الأعداد الحقيقية R

المقطع x هو 1 ، ولا يوجد مقطع y

لهذا الاقتران خط تقارب رأسي هو المحورy 

الاقتران متزايد.

(b)

مجال هذا الاقتران هو مجموعة الأعداد الحقيقية الموجبة R+ أي (0 , begin mathsize 20px style table attributes columnalign right left columnspacing 1em end attributes row cell R subscript 1 equals 2 end cell cell not stretchy rightwards double arrow negative integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x equals 2 end cell row blank cell not stretchy rightwards double arrow integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x equals negative 2 end cell row cell R subscript 2 equals 3 end cell cell not stretchy rightwards double arrow negative integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x equals 3 end cell row blank cell not stretchy rightwards double arrow integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x equals negative 3 end cell row cell integral subscript 0 superscript 4 f left parenthesis x right parenthesis d x end cell cell equals integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x plus integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x end cell row cell not stretchy rightwards double arrow 10 end cell cell equals integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x plus left parenthesis negative 3 right parenthesis end cell row cell not stretchy rightwards double arrow integral subscript 0 superscript 3 end cell cell f left parenthesis x right parenthesis d x equals 13 end cell row cell integral subscript negative 1 end subscript superscript 3 f left parenthesis x right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x plus integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x end cell row blank cell equals negative 2 plus 13 end cell row blank cell equals 11 end cell end table end style).

مدى هذا الاقتران هو مجموعة الأعداد الحقيقية R

المقطع x هو 1 ، ولا يوجد مقطع y

لهذا الاقتران خط تقارب رأسي هو المحورy 

الاقتران متناقص.


الاقترانات اللوغاريتمية

(a)

5 – x > 5

-x > -5

x < 5

مجال الاقتران هو (begin mathsize 20px style table attributes columnalign right left columnspacing 1em end attributes row cell R subscript 1 equals 2 end cell cell not stretchy rightwards double arrow negative integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x equals 2 end cell row blank cell not stretchy rightwards double arrow integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x equals negative 2 end cell row cell R subscript 2 equals 3 end cell cell not stretchy rightwards double arrow negative integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x equals 3 end cell row blank cell not stretchy rightwards double arrow integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x equals negative 3 end cell row cell integral subscript 0 superscript 4 f left parenthesis x right parenthesis d x end cell cell equals integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x plus integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x end cell row cell not stretchy rightwards double arrow 10 end cell cell equals integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x plus left parenthesis negative 3 right parenthesis end cell row cell not stretchy rightwards double arrow integral subscript 0 superscript 3 end cell cell f left parenthesis x right parenthesis d x equals 13 end cell row cell integral subscript negative 1 end subscript superscript 3 f left parenthesis x right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x plus integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x end cell row blank cell equals negative 2 plus 13 end cell row blank cell equals 11 end cell end table end style , 5-)

(b)

9 + 3x > 0

3x > -9

x > -3

مجال الاقتران هو (-3 , begin mathsize 20px style table attributes columnalign right left columnspacing 1em end attributes row cell R subscript 1 equals 2 end cell cell not stretchy rightwards double arrow negative integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x equals 2 end cell row blank cell not stretchy rightwards double arrow integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x equals negative 2 end cell row cell R subscript 2 equals 3 end cell cell not stretchy rightwards double arrow negative integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x equals 3 end cell row blank cell not stretchy rightwards double arrow integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x equals negative 3 end cell row cell integral subscript 0 superscript 4 f left parenthesis x right parenthesis d x end cell cell equals integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x plus integral subscript 3 superscript 4 f left parenthesis x right parenthesis d x end cell row cell not stretchy rightwards double arrow 10 end cell cell equals integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x plus left parenthesis negative 3 right parenthesis end cell row cell not stretchy rightwards double arrow integral subscript 0 superscript 3 end cell cell f left parenthesis x right parenthesis d x equals 13 end cell row cell integral subscript negative 1 end subscript superscript 3 f left parenthesis x right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 0 f left parenthesis x right parenthesis d x plus integral subscript 0 superscript 3 f left parenthesis x right parenthesis d x end cell row blank cell equals negative 2 plus 13 end cell row blank cell equals 11 end cell end table end style)

إعداد : شبكة منهاجي التعليمية

13 / 09 / 2022

النقاشات