حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

التكامل بالكسور الجزئية

عوامل المقام كثيرات حدود خطية مختلفة

أتحقق من فهمي صفحة (49):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral fraction numerator x minus 7 over denominator x squared minus x minus 6 end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator x minus 7 over denominator x squared minus x minus 6 end fraction equals fraction numerator x minus 7 over denominator left parenthesis x minus 3 right parenthesis left parenthesis x plus 2 right parenthesis end fraction equals fraction numerator A over denominator x minus 3 end fraction plus fraction numerator B over denominator x plus 2 end fraction end cell row blank cell not stretchy rightwards double arrow x minus 7 equals A left parenthesis x plus 2 right parenthesis plus B left parenthesis x minus 3 right parenthesis end cell row blank cell x equals 3 not stretchy rightwards double arrow A equals negative 4 over 5 end cell row blank cell x equals negative 2 not stretchy rightwards double arrow B equals 9 over 5 end cell row blank cell integral fraction numerator x minus 7 over denominator x squared minus x minus 6 end fraction d x equals integral left parenthesis fraction numerator negative 4 over 5 over denominator x minus 3 end fraction plus fraction numerator 9 over 5 over denominator x plus 2 end fraction right parenthesis d x end cell row blank cell equals negative 4 over 5 ln invisible function application vertical line x minus 3 vertical line plus 9 over 5 ln invisible function application vertical line x plus 2 vertical line plus C end cell end table end style

begin mathsize 20px style integral fraction numerator 3 x minus 1 over denominator x squared minus 1 end fraction d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator 3 x minus 1 over denominator x squared minus 1 end fraction equals fraction numerator 3 x minus 1 over denominator left parenthesis x minus 1 right parenthesis left parenthesis x plus 1 right parenthesis end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator x plus 1 end fraction end cell row blank cell not stretchy rightwards double arrow 3 x minus 1 equals A left parenthesis x plus 1 right parenthesis plus B left parenthesis x minus 1 right parenthesis end cell row blank cell x equals 1 not stretchy rightwards double arrow A equals 1 end cell row blank cell x equals negative 1 not stretchy rightwards double arrow B equals 2 end cell row blank cell integral fraction numerator 3 x minus 1 over denominator x squared minus 1 end fraction d x equals integral left parenthesis fraction numerator 1 over denominator x minus 1 end fraction plus fraction numerator 2 over denominator x plus 1 end fraction right parenthesis d x end cell row blank cell equals ln invisible function application vertical line x minus 1 vertical line plus 2 ln invisible function application vertical line x plus 1 vertical line plus C end cell end table end style


عوامل المقام كثيرات حدود خطية، أحدها مكرر

أتحقق من فهمي صفحة (51):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral fraction numerator x plus 4 over denominator left parenthesis 2 x minus 1 right parenthesis left parenthesis x minus 1 right parenthesis squared end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator x plus 4 over denominator left parenthesis 2 x minus 1 right parenthesis left parenthesis x minus 1 right parenthesis squared end fraction equals fraction numerator A over denominator 2 x minus 1 end fraction plus fraction numerator B over denominator x minus 1 end fraction plus fraction numerator C over denominator left parenthesis x minus 1 right parenthesis squared end fraction end cell row blank cell not stretchy rightwards double arrow x plus 4 equals A left parenthesis x minus 1 right parenthesis squared plus B left parenthesis 2 x minus 1 right parenthesis left parenthesis x minus 1 right parenthesis plus C left parenthesis 2 x minus 1 right parenthesis end cell row blank cell x equals 1 half not stretchy rightwards double arrow A equals 18 end cell row blank cell x equals 1 not stretchy rightwards double arrow C equals 5 end cell row blank cell x equals 0 not stretchy rightwards double arrow 4 equals A plus B minus C not stretchy rightwards double arrow B equals negative 9 end cell row blank cell integral fraction numerator x plus 4 over denominator left parenthesis 2 x minus 1 right parenthesis left parenthesis x minus 1 right parenthesis squared end fraction d x equals integral left parenthesis fraction numerator 18 over denominator 2 x minus 1 end fraction plus fraction numerator negative 9 over denominator x minus 1 end fraction plus fraction numerator 5 over denominator left parenthesis x minus 1 right parenthesis squared end fraction right parenthesis d x end cell row blank cell equals 18 over 2 ln invisible function application vertical line 2 x minus 1 vertical line minus 9 ln invisible function application vertical line x minus 1 vertical line minus fraction numerator 5 over denominator x minus 1 end fraction plus C end cell row blank cell equals 9 ln invisible function application vertical line 2 x minus 1 vertical line minus 9 ln invisible function application vertical line x minus 1 vertical line minus fraction numerator 5 over denominator x minus 1 end fraction plus C end cell end table end style

begin mathsize 20px style integral fraction numerator x squared minus 2 x minus 4 over denominator x cubed minus 4 x squared plus 4 x end fraction d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator x squared minus 2 x minus 4 over denominator x cubed minus 4 x squared plus 4 x end fraction equals fraction numerator x squared minus 2 x minus 4 over denominator x left parenthesis x minus 2 right parenthesis squared end fraction equals fraction numerator A over denominator x minus 2 end fraction plus fraction numerator B over denominator left parenthesis x minus 2 right parenthesis squared end fraction plus C over x end cell row blank cell not stretchy rightwards double arrow x squared minus 2 x minus 4 equals A x left parenthesis x minus 2 right parenthesis plus B x plus C left parenthesis x minus 2 right parenthesis squared end cell row blank cell x equals 2 not stretchy rightwards double arrow B equals negative 2 end cell row blank cell x equals 0 not stretchy rightwards double arrow C equals negative 1 end cell row blank cell x equals 1 not stretchy rightwards double arrow negative 5 equals negative A plus B plus C not stretchy rightwards double arrow A equals 2 end cell row blank cell integral fraction numerator x squared minus 2 x minus 4 over denominator x cubed minus 4 x squared plus 4 x end fraction d x equals integral left parenthesis fraction numerator 2 over denominator x minus 2 end fraction plus fraction numerator negative 2 over denominator left parenthesis x minus 2 right parenthesis squared end fraction plus fraction numerator negative 1 over denominator x end fraction right parenthesis d x end cell row blank cell space of 1em equals 2 ln invisible function application vertical line x minus 2 vertical line plus fraction numerator 2 over denominator x plus 2 end fraction minus ln invisible function application vertical line x vertical line plus C end cell end table end style


عوامل المقام كثيرات حدود، أحدها تربيعي غير قابل للتحليل، وغير مكرر

أتحقق من فهمي صفحة (52):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral fraction numerator 3 x plus 4 over denominator left parenthesis x minus 3 right parenthesis left parenthesis x squared plus 4 right parenthesis end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator 3 x plus 4 over denominator left parenthesis x minus 3 right parenthesis left parenthesis x squared plus 4 right parenthesis end fraction equals fraction numerator A over denominator x minus 3 end fraction plus fraction numerator B x plus C over denominator x squared plus 4 end fraction end cell row blank cell not stretchy rightwards double arrow 3 x plus 4 equals A left parenthesis x squared plus 4 right parenthesis plus left parenthesis B x plus C right parenthesis left parenthesis x minus 3 right parenthesis end cell row blank cell x equals 3 not stretchy rightwards double arrow A equals 1 end cell row blank cell x equals 0 not stretchy rightwards double arrow 4 equals 4 A minus 3 C not stretchy rightwards double arrow C equals 0 end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell x equals 1 not stretchy rightwards double arrow 7 equals 5 A minus 2 B minus 2 C not stretchy rightwards double arrow B equals negative 1 end cell end table end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator 3 x plus 4 over denominator left parenthesis x minus 3 right parenthesis left parenthesis x squared plus 4 right parenthesis end fraction d x end cell cell equals integral left parenthesis fraction numerator 1 over denominator x minus 3 end fraction minus fraction numerator x over denominator x squared plus 4 end fraction right parenthesis d x end cell row blank cell equals integral left parenthesis fraction numerator 1 over denominator x minus 3 end fraction minus 1 half cross times fraction numerator 2 x over denominator x squared plus 4 end fraction right parenthesis d x end cell row blank cell equals ln invisible function application vertical line x minus 3 vertical line minus 1 half ln invisible function application vertical line x squared plus 4 vertical line plus C end cell end table end cell end table end style

 begin mathsize 20px style integral fraction numerator 7 x squared minus x plus 1 over denominator x cubed plus 1 end fraction d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator 7 x squared minus x plus 1 over denominator x cubed plus 1 end fraction equals fraction numerator 7 x squared minus x plus 1 over denominator left parenthesis x plus 1 right parenthesis left parenthesis x squared minus x plus 1 right parenthesis end fraction equals fraction numerator A over denominator x plus 1 end fraction plus fraction numerator B x plus C over denominator x squared minus x plus 1 end fraction end cell row blank cell not stretchy rightwards double arrow 7 x squared minus x plus 1 equals A left parenthesis x squared minus x plus 1 right parenthesis plus left parenthesis B x plus C right parenthesis left parenthesis x plus 1 right parenthesis end cell row blank cell x equals negative 1 not stretchy rightwards double arrow A equals 3 end cell row blank cell x equals 0 not stretchy rightwards double arrow 1 equals A plus C not stretchy rightwards double arrow C equals negative 2 end cell row blank cell x equals 1 not stretchy rightwards double arrow 7 equals A plus 2 B plus 2 C not stretchy rightwards double arrow B equals 4 end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator 7 x squared minus x plus 1 over denominator x cubed plus 1 end fraction d x end cell cell equals integral left parenthesis fraction numerator 3 over denominator x plus 1 end fraction plus fraction numerator 4 x minus 2 over denominator x squared minus x plus 1 end fraction right parenthesis d x end cell row blank cell equals integral left parenthesis fraction numerator 3 over denominator x plus 1 end fraction plus 2 cross times fraction numerator 2 x minus 1 over denominator x squared minus x plus 1 end fraction right parenthesis d x end cell row blank cell equals 3 ln invisible function application vertical line x plus 1 vertical line plus 2 ln invisible function application vertical line x squared minus x plus 1 vertical line plus C end cell end table end cell end table end style


درجة كثيرة الحدود في البيسط مساوية لدرجة كثيرة الحدود في المقام، أو أكبر منها

أتحقق من فهمي صفحة (53):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral fraction numerator 4 x cubed minus 5 over denominator 2 x squared minus x minus 1 end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral fraction numerator 4 x cubed minus 5 over denominator 2 x squared minus x minus 1 end fraction d x equals integral left parenthesis 2 x plus 1 plus fraction numerator 3 x minus 4 over denominator 2 x squared minus x minus 1 end fraction right parenthesis d x end cell row blank cell fraction numerator 3 x minus 4 over denominator 2 x squared minus x minus 1 end fraction equals fraction numerator 3 x minus 4 over denominator left parenthesis 2 x plus 1 right parenthesis left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator 2 x plus 1 end fraction plus fraction numerator B over denominator x minus 1 end fraction end cell row blank cell not stretchy rightwards double arrow 3 x minus 4 equals A left parenthesis x minus 1 right parenthesis plus B left parenthesis 2 x plus 1 right parenthesis end cell row blank cell x equals negative 1 half not stretchy rightwards double arrow A equals 11 over 3 end cell row blank cell x equals 1 not stretchy rightwards double arrow B equals negative 1 third end cell row blank cell integral fraction numerator 4 x cubed minus 5 over denominator 2 x squared minus x minus 1 end fraction d x equals integral left parenthesis 2 x plus 1 plus fraction numerator 11 over 3 over denominator 2 x plus 1 end fraction plus fraction numerator negative 1 third over denominator x minus 1 end fraction right parenthesis d x end cell row blank cell equals x squared plus x plus 11 over 6 ln invisible function application vertical line 2 x plus 1 vertical line minus 1 third ln invisible function application vertical line x minus 1 vertical line plus C end cell end table end style

 begin mathsize 20px style integral fraction numerator x squared plus x minus 1 over denominator x squared minus x end fraction d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator x squared plus x minus 1 over denominator x squared minus x end fraction d x end cell cell equals integral left parenthesis 1 plus fraction numerator 2 x minus 1 over denominator x squared minus x end fraction right parenthesis d x end cell row blank cell equals x plus ln invisible function application vertical line x squared minus x vertical line plus C end cell end table end style


التكامل بالكسور الجزئية لتكاملات محدودة

أتحقق من فهمي صفحة (54):

أجد كل قيمة من التكاملين الآتيين:

begin mathsize 20px style integral subscript 3 superscript 4 fraction numerator 2 x cubed plus x squared minus 2 x minus 4 over denominator x squared minus 4 end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 3 superscript 4 fraction numerator 2 x cubed plus x squared minus 2 x minus 4 over denominator x squared minus 4 end fraction d x end cell cell equals integral subscript 3 superscript 4 left parenthesis 2 x plus 1 plus fraction numerator 6 x over denominator x squared minus 4 end fraction right parenthesis d x end cell row blank cell equals left parenthesis x squared plus x plus 3 ln invisible function application vertical line x squared minus 4 vertical line right parenthesis vertical line subscript 3 superscript 4 end cell row blank cell equals left parenthesis 20 plus 3 ln invisible function application 12 right parenthesis minus left parenthesis 12 plus 3 ln invisible function application 5 right parenthesis end cell row blank cell equals 8 plus 3 ln invisible function application 12 over 5 end cell end table end style

begin mathsize 20px style integral subscript 5 superscript 6 fraction numerator 3 x minus 10 over denominator x squared minus 7 x plus 12 end fraction d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator 3 x minus 10 over denominator x squared minus 7 x plus 12 end fraction equals fraction numerator 3 x minus 10 over denominator left parenthesis x minus 3 right parenthesis left parenthesis x minus 4 right parenthesis end fraction equals fraction numerator A over denominator x minus 3 end fraction plus fraction numerator B over denominator x minus 4 end fraction end cell row blank cell not stretchy rightwards double arrow 3 x minus 10 equals A left parenthesis x minus 4 right parenthesis plus B left parenthesis x minus 3 right parenthesis end cell row blank cell x equals 3 not stretchy rightwards double arrow A equals 1 end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell x equals 4 not stretchy rightwards double arrow B equals 2 end cell end table end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 5 superscript 6 fraction numerator 3 x minus 10 over denominator x squared minus 7 x plus 12 end fraction d x end cell cell equals integral subscript 5 superscript 6 left parenthesis fraction numerator 1 over denominator x minus 3 end fraction plus fraction numerator 2 over denominator x minus 4 end fraction right parenthesis d x end cell row blank cell equals left parenthesis ln invisible function application vertical line x minus 3 vertical line plus 2 ln invisible function application vertical line x minus 4 vertical line right parenthesis vertical line subscript 5 superscript 6 end cell row blank cell equals ln invisible function application 3 plus 2 ln invisible function application 2 minus left parenthesis ln invisible function application 2 plus 2 ln invisible function application 1 right parenthesis end cell row blank cell equals ln invisible function application 3 plus ln invisible function application 2 equals ln invisible function application 6 end cell end table end cell end table end style


التكامل بالكسور الجزئية، والتكامل بالتعويض

أتحقق من فهمي صفحة (57):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral fraction numerator sec squared invisible function application x over denominator tan squared invisible function application x minus 1 end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals tan invisible function application x not stretchy rightwards double arrow fraction numerator d u over denominator d x end fraction equals sec squared invisible function application x not stretchy ⟹ d x equals fraction numerator d u over denominator sec squared invisible function application x end fraction end cell row blank cell integral fraction numerator sec squared invisible function application x over denominator tan squared invisible function application x minus 1 end fraction d x equals integral fraction numerator sec squared invisible function application x over denominator u squared minus 1 end fraction fraction numerator d u over denominator sec squared invisible function application x end fraction equals integral fraction numerator 1 over denominator u squared minus 1 end fraction d u end cell row blank cell fraction numerator 1 over denominator u squared minus 1 end fraction equals fraction numerator 1 over denominator left parenthesis u minus 1 right parenthesis left parenthesis u plus 1 right parenthesis end fraction equals fraction numerator A over denominator u minus 1 end fraction plus fraction numerator B over denominator u plus 1 end fraction end cell row blank cell not stretchy rightwards double arrow 1 equals A left parenthesis u plus 1 right parenthesis plus B left parenthesis u minus 1 right parenthesis end cell row blank cell u equals 1 not stretchy rightwards double arrow A equals 1 half end cell row blank cell u equals negative 1 not stretchy rightwards double arrow B equals negative 1 half end cell row blank cell integral fraction numerator 1 over denominator u squared minus 1 end fraction d u equals integral left parenthesis fraction numerator 1 half over denominator u minus 1 end fraction plus fraction numerator negative 1 half over denominator u plus 1 end fraction right parenthesis d u end cell row blank cell equals 1 half ln invisible function application vertical line u minus 1 vertical line minus 1 half ln invisible function application vertical line u plus 1 vertical line plus C equals 1 half ln invisible function application vertical line fraction numerator u minus 1 over denominator u plus 1 end fraction vertical line plus C end cell row blank cell not stretchy rightwards double arrow integral fraction numerator sec squared invisible function application x over denominator tan squared invisible function application x minus 1 end fraction d x equals 1 half ln invisible function application vertical line fraction numerator tan invisible function application x minus 1 over denominator tan invisible function application x plus 1 end fraction vertical line plus C end cell end table end sty

begin mathsize 20px style integral fraction numerator e to the power of x over denominator left parenthesis e to the power of x minus 1 right parenthesis left parenthesis e to the power of x plus 4 right parenthesis end fraction d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals e to the power of x not stretchy rightwards double arrow fraction numerator d u over denominator d x end fraction equals e to the power of x not stretchy rightwards double arrow d x equals fraction numerator d u over denominator e to the power of x end fraction end cell row blank cell integral fraction numerator e to the power of x over denominator left parenthesis e to the power of x minus 1 right parenthesis left parenthesis e to the power of x plus 4 right parenthesis end fraction d x equals integral fraction numerator e to the power of x over denominator left parenthesis u minus 1 right parenthesis left parenthesis u plus 4 right parenthesis end fraction fraction numerator d u over denominator e to the power of x end fraction end cell row blank cell equals integral fraction numerator 1 over denominator left parenthesis u minus 1 right parenthesis left parenthesis u plus 4 right parenthesis end fraction d u end cell row blank cell fraction numerator 1 over denominator left parenthesis u minus 1 right parenthesis left parenthesis u plus 4 right parenthesis end fraction equals fraction numerator A over denominator u minus 1 end fraction plus fraction numerator B over denominator u plus 4 end fraction end cell row blank cell not stretchy rightwards double arrow 1 equals A left parenthesis u plus 4 right parenthesis plus B left parenthesis u minus 1 right parenthesis plus end cell row blank cell u equals 1 not stretchy rightwards double arrow A equals 1 fifth end cell row blank cell u equals negative 4 not stretchy rightwards double arrow B equals negative 1 fifth end cell row blank cell integral fraction numerator 1 over denominator left parenthesis u minus 1 right parenthesis left parenthesis u plus 4 right parenthesis end fraction d u equals integral left parenthesis fraction numerator 1 fifth over denominator u minus 1 end fraction plus fraction numerator negative 1 fifth over denominator u plus 4 end fraction right parenthesis d u end cell row blank cell equals 1 fifth ln invisible function application vertical line u minus 1 vertical line minus 1 fifth ln invisible function application vertical line u plus 4 vertical line plus C equals 1 fifth ln invisible function application vertical line fraction numerator u minus 1 over denominator u plus 4 end fraction vertical line plus C end cell row blank cell not stretchy rightwards double arrow integral fraction numerator e to the power of x over denominator left parenthesis e to the power of x minus 1 right parenthesis left parenthesis e to the power of x plus 4 right parenthesis end fraction d x equals 1 fifth ln invisible function application vertical line fraction numerator e to the power of x minus 1 over denominator e to the power of x plus 4 end fraction vertical line plus C end cell end table end style

إعداد : شبكة منهاجي التعليمية

12 / 02 / 2023

النقاشات