حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

الاقترانات اللوغاريتمية

الاقترانات اللوغاريتمية

(a) log2 16 = 4  → 24 = 16

(b) log7 7 = 1  → 71 = 7

(c) log3 (begin mathsize 18px style 1 over 243 end style) = -5  → 3-5 = begin mathsize 18px style 1 over 243 end style

(d) log9 1 = 0  → 90 =


الاقترانات اللوغاريتمية

(a) 73 = 343  → log7 343 = 3

(b) begin mathsize 18px style 49 to the power of 1 half end exponent end style= 7  → log49 7 = begin mathsize 18px style 1 half end style

(c) (2)-5 = begin mathsize 18px style 1 over 32 end style → log2 begin mathsize 18px style 1 over 32 end style = -5

(d) 170 = 1  → log17 1 = 0


الاقترانات اللوغاريتمية

(a)

log5 25 = y

5y = 25

5y = 52

y = 2

إذن: log5 25 = 2

(b)

Log8 begin mathsize 18px style square root of 8 end style = y

8y = begin mathsize 18px style square root of 8 end style

8y = begin mathsize 18px style 8 to the power of 1 half end exponent end style

y = begin mathsize 18px style 1 half end style

إذن: begin mathsize 18px style 1 half end style log8 begin mathsize 18px style square root of 8 end style =

(c)

log81 9 = y

81y = 9

92y = 91

2y = 1

y = begin mathsize 18px style 1 half end style

إذن: log81 9 =

(d)

log3 begin mathsize 18px style 1 over 27 end style = y

3y = begin mathsize 18px style 1 over 27 end style

3y = begin mathsize 18px style 1 over 3 cubed end style

3y = 3-3

y = -3

إذن: log3 begin mathsize 18px style 1 over 27 end style = -3


الاقترانات اللوغاريتمية

(a) log2 1 = 0

(b) log32 begin mathsize 18px style square root of 32 end style = log32 begin mathsize 18px style 32 to the power of 1 half end exponent end style = begin mathsize 18px style 1 half end style

(c) log9 9 = 1

(d) 8log8 13 = 13


الاقترانات اللوغاريتمية

(a)

مجال هذا الاقتران هو مجموعة الأعداد الحقيقية الموجبة R+ أي (0 , begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of 1 third end exponent end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals 1 third left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis right parenthesis end cell row blank cell equals fraction numerator 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis over denominator 3 cube root of left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis squared end root end fraction end cell end table end style).

مدى هذا الاقتران هو مجموعة الأعداد الحقيقية R

المقطع x هو 1 ، ولا يوجد مقطع y

لهذا الاقتران خط تقارب رأسي هو المحورy 

الاقتران متزايد.

(b)

مجال هذا الاقتران هو مجموعة الأعداد الحقيقية الموجبة R+ أي (0 , begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of 1 third end exponent end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals 1 third left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis right parenthesis end cell row blank cell equals fraction numerator 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis over denominator 3 cube root of left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis squared end root end fraction end cell end table end style).

مدى هذا الاقتران هو مجموعة الأعداد الحقيقية R

المقطع x هو 1 ، ولا يوجد مقطع y

لهذا الاقتران خط تقارب رأسي هو المحورy 

الاقتران متناقص.


الاقترانات اللوغاريتمية

(a)

5 – x > 5

-x > -5

x < 5

مجال الاقتران هو (begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of 1 third end exponent end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals 1 third left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis right parenthesis end cell row blank cell equals fraction numerator 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis over denominator 3 cube root of left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis squared end root end fraction end cell end table end style , 5-)

(b)

9 + 3x > 0

3x > -9

x > -3

مجال الاقتران هو (-3 , begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of 1 third end exponent end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals 1 third left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis right parenthesis end cell row blank cell equals fraction numerator 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis over denominator 3 cube root of left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis squared end root end fraction end cell end table end style)

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات