حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

العمليات على الأعداد المركبة

جمع الأعداد المركبة وطرحها

أتحقق من فهمي صفحة 156

أجد ناتج كلّ ممّا يأتي:

(a) (7 + 8i) + (-9 + 14i)

begin mathsize 20px style left parenthesis 7 plus 8 i right parenthesis plus left parenthesis negative 9 plus 14 i right parenthesis equals negative 2 plus 22 i end style

(b) (11 + 9i) - (4 - 6i)

begin mathsize 20px style left parenthesis 11 plus 9 i right parenthesis minus left parenthesis 4 minus 6 i right parenthesis equals 7 plus 15 i end style


ضرب الأعداد المركبة

أتحقق من فهمي صفحة 157

أجد ناتج كلّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

(a) -3i(4 – 5i)

begin mathsize 20px style negative 3 i left parenthesis 4 minus 5 i right parenthesis equals negative 12 i plus 15 i squared equals negative 15 minus 12 i end style

(b) (5 + 4i) (7 – 4i)

begin mathsize 20px style left parenthesis 5 plus 4 i right parenthesis left parenthesis 7 minus 4 i right parenthesis equals 35 minus 20 i plus 28 i minus 16 i squared equals 35 plus 8 i plus 16 equals 51 plus 8 i end style

(c) (3 + 6i)2

begin mathsize 20px style left parenthesis 3 plus 6 i right parenthesis squared equals 9 plus 36 i plus 36 i squared equals 9 plus 36 i minus 36 equals negative 27 plus 36 i end style


قسمة الأعداد المركبة

أتحقق من فهمي صفحة 158

أجد ناتج كلّ ممّا يأتي، ثم أكتبه بالصورة القياسية:

(a) begin mathsize 20px style fraction numerator negative 4 plus 3 i over denominator 1 plus i end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator negative 4 plus 3 i over denominator 1 plus i end fraction end cell cell equals fraction numerator negative 4 plus 3 i over denominator 1 plus i end fraction cross times fraction numerator 1 minus i over denominator 1 minus i end fraction end cell row blank cell equals fraction numerator negative 4 plus 4 i plus 3 i minus 3 i squared over denominator 1 minus i squared end fraction end cell row blank cell equals fraction numerator negative 4 plus 7 i plus 3 over denominator 1 plus 1 end fraction end cell row blank cell equals fraction numerator negative 1 plus 7 i over denominator 2 end fraction equals negative 1 half plus 7 over 2 i end cell end table end style

(b) begin mathsize 20px style fraction numerator 2 minus 6 i over denominator negative 3 i end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator 2 minus 6 i over denominator negative 3 i end fraction equals end cell cell fraction numerator 2 minus 6 i over denominator negative 3 i end fraction cross times i over i end cell row blank cell equals fraction numerator 2 i minus 6 i squared over denominator negative 3 i squared end fraction end cell row blank cell equals fraction numerator 2 i plus 6 over denominator 3 end fraction equals 2 plus 2 over 3 i end cell end table end style

(c) begin mathsize 20px style fraction numerator 7 i over denominator 4 minus 4 i end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator 7 i over denominator 4 minus 4 i end fraction equals fraction numerator 7 i over denominator 4 minus 4 i end fraction cross times fraction numerator 4 plus 4 i over denominator 4 plus 4 i end fraction end cell row blank cell equals fraction numerator 28 i plus 28 i squared over denominator 16 minus 16 i squared end fraction end cell row blank cell equals fraction numerator 28 i minus 28 over denominator 16 plus 16 end fraction end cell row blank cell equals fraction numerator 28 i minus 28 over denominator 32 end fraction equals negative 7 over 8 plus 7 over 8 i end cell row blank blank end table end style


ضرب الأعداد المركبة المكتوبة بالصورة المثلثية وقسمتها

أتحقق من فهمي صفحة 160

أجد ناتج كلّ ممّا يأتي بالصورة المثلثية:

(a) begin mathsize 20px style 6 left parenthesis cos invisible function application space pi over 3 plus i sin invisible function application space pi over 3 right parenthesis cross times 2 left parenthesis cos invisible function application space pi over 6 plus i sin invisible function application space pi over 6 right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell 6 left parenthesis c o s invisible function application space pi over 3 plus i s i n invisible function application space pi over 3 right parenthesis cross times 2 left parenthesis c o s invisible function application space pi over 6 plus i s i n invisible function application space pi over 6 right parenthesis end cell row blank cell equals 6 cross times 2 left parenthesis c o s invisible function application space left parenthesis pi over 3 plus pi over 6 right parenthesis plus i s i n invisible function application space left parenthesis pi over 3 plus pi over 6 right parenthesis right parenthesis equals 12 left parenthesis c o s invisible function application space pi over 2 plus i s i n invisible function application space pi over 2 right parenthesis end cell end table end style

(b) begin mathsize 20px style 6 left parenthesis cos invisible function application space left parenthesis negative pi over 3 right parenthesis plus i sin invisible function application space left parenthesis negative pi over 3 right parenthesis right parenthesis divided by 2 left parenthesis cos invisible function application space fraction numerator 5 pi over denominator 6 end fraction plus i sin invisible function application space fraction numerator 5 pi over denominator 6 end fraction right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell 6 left parenthesis c o s invisible function application space left parenthesis negative pi over 3 right parenthesis plus i s i n invisible function application space left parenthesis negative pi over 3 right parenthesis right parenthesis divided by 2 left parenthesis c o s invisible function application space fraction numerator 5 pi over denominator 6 end fraction plus i s i n invisible function application space fraction numerator 5 pi over denominator 6 end fraction right parenthesis end cell row blank cell equals 6 over 2 left parenthesis c o s invisible function application space left parenthesis negative pi over 3 minus fraction numerator 5 pi over denominator 6 end fraction right parenthesis plus i s i n invisible function application space left parenthesis negative pi over 3 minus fraction numerator 5 pi over denominator 6 end fraction right parenthesis right parenthesis end cell row blank cell equals 3 left parenthesis c o s invisible function application space left parenthesis negative fraction numerator 7 pi over denominator 6 end fraction right parenthesis plus i s i n invisible function application space left parenthesis negative fraction numerator 7 pi over denominator 6 end fraction right parenthesis right parenthesis end cell row blank cell equals 3 left parenthesis c o s invisible function application space left parenthesis negative fraction numerator 7 pi over denominator 6 end fraction plus 2 pi right parenthesis plus i s i n invisible function application space left parenthesis negative fraction numerator 7 pi over denominator 6 end fraction plus 2 pi right parenthesis right parenthesis end cell row blank cell equals 3 left parenthesis c o s invisible function application space fraction numerator 5 pi over denominator 6 end fraction plus i s i n invisible function application space fraction numerator 5 pi over denominator 6 end fraction right parenthesis end cell end table end style


الجذر التربيعي للعدد المركب

أتحقق من فهمي صفحة 161

أجد الجذرين التربيعيين لكل من الأعداد المركبة الآتية:

(a) -5 – 12i

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell square root of negative 5 minus 12 i end root equals x plus i y not stretchy rightwards arrow negative 5 minus 12 i equals x squared plus 2 i x y plus i squared y squared end cell row blank cell not stretchy rightwards arrow negative 5 minus 12 i equals x squared minus y squared plus 2 i x y end cell row blank cell not stretchy rightwards arrow negative 5 equals x squared minus y squared comma negative 12 equals 2 x y end cell row blank cell y equals negative 6 over x end cell row blank cell x squared minus y squared equals negative 5 not stretchy rightwards arrow x squared minus 36 over x squared equals negative 5 end cell row blank cell not stretchy rightwards arrow x to the power of 4 plus 5 x squared minus 36 equals 0 end cell row blank cell not stretchy rightwards arrow left parenthesis x squared plus 9 right parenthesis left parenthesis x squared minus 4 right parenthesis equals 0 not stretchy rightwards arrow x equals plus-or-minus 2 end cell end table end style

عندما x = 2 ، فإن y = -3 ، وعندما x = -2 ، فإن y = 3 .

إذن الجذران التربيعيان للعدد المركب -5 – 12i هما: 2 – 3i , -2 + 3i

(b) -9i

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell square root of negative 9 i end root equals x plus i y not stretchy rightwards arrow negative 9 i equals x squared plus 2 i x y plus i squared y squared end cell row blank cell not stretchy rightwards arrow negative 9 i equals x squared minus y squared plus 2 i x y end cell row blank cell not stretchy rightwards arrow 0 equals x squared minus y squared comma negative 9 equals 2 x y end cell row blank cell y equals negative fraction numerator 9 over denominator 2 x end fraction end cell row blank cell x squared minus y squared equals 0 not stretchy rightwards arrow x squared minus fraction numerator 81 over denominator 4 x squared end fraction equals 0 end cell row blank cell not stretchy rightwards arrow 4 x to the power of 4 minus 81 equals 0 end cell row blank cell not stretchy rightwards arrow left parenthesis 2 x squared plus 9 right parenthesis left parenthesis 2 x squared minus 9 right parenthesis equals 0 not stretchy rightwards arrow x equals plus-or-minus fraction numerator 3 over denominator square root of 2 end fraction end cell end table end style

عندما x = begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end style ، فإن y = -begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end style ، وعندما x = -begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end style ، فإن y = begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end style .

إذن الجذران التربيعيان للعدد المركب  - 9i هما: begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end stylebegin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end stylei , -begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end style + begin mathsize 20px style fraction numerator 3 over denominator square root of 2 end fraction end stylei

(c) begin mathsize 20px style negative 1 half plus i fraction numerator square root of 3 over denominator 2 end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell square root of negative 1 half plus fraction numerator square root of 3 over denominator 2 end fraction end root i equals x plus i y not stretchy rightwards arrow negative 1 half plus fraction numerator square root of 3 over denominator 2 end fraction i equals x squared plus 2 i x y plus i squared y squared end cell row blank cell not stretchy rightwards arrow negative 1 half plus fraction numerator square root of 3 over denominator 2 end fraction i equals x squared minus y squared plus 2 i x y end cell row blank cell not stretchy rightwards arrow negative 1 half equals x squared minus y squared comma fraction numerator square root of 3 over denominator 2 end fraction equals 2 x y end cell row blank cell y equals fraction numerator square root of 3 over denominator 4 x end fraction end cell row blank cell x squared minus y squared equals negative 1 half not stretchy rightwards arrow x squared minus fraction numerator 3 over denominator 16 x squared end fraction equals negative 1 half end cell row blank cell not stretchy rightwards arrow 16 x to the power of 4 plus 8 x squared minus 3 equals 0 end cell row blank cell not stretchy rightwards arrow left parenthesis 4 x squared minus 1 right parenthesis left parenthesis 4 x squared plus 3 right parenthesis equals 0 not stretchy rightwards arrow x equals plus-or-minus 1 half end cell row blank blank end table end style

عندما x = begin mathsize 20px style 1 half end style ، فإن y = begin mathsize 20px style fraction numerator square root of 3 over denominator 2 end fraction end style ، وعندما x = -begin mathsize 20px style 1 half end style ، فإن y = -begin mathsize 20px style fraction numerator square root of 3 over denominator 2 end fraction end style .

إذن الجذران التربيعيان للعدد المركب  -5 - 12i هما: begin mathsize 20px style 1 half end style + begin mathsize 20px style fraction numerator square root of 3 over denominator 2 end fraction end stylei , -begin mathsize 20px style 1 half end style - begin mathsize 20px style fraction numerator square root of 3 over denominator 2 end fraction end stylei


الجذور المركبة لمعادلات كثيرات الحدود

أتحقق من فهمي صفحة 165

أجد جميع الجذور الحقيقية والجذور المركبة للمعادلة: z3 z2 – 7z + 15 = 0

عوامل الحد الثابت هي: begin mathsize 20px style plus-or-minus 1 comma plus-or-minus 3 comma plus-or-minus 5 comma plus-or-minus 15 end style

بالتعويض، نجد أن العدد -3 يحقق المعادلة؛ لأن: (-3)3 – (-3)2 – 7(-3) + 15 = 0

إذن (z + 3) هو أحد عوامل كثير الحدود، نجري عملية القسمة، فنجد أنّ:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell z cubed minus z squared minus 7 z plus 15 equals left parenthesis z plus 3 right parenthesis left parenthesis z squared minus 4 z plus 5 right parenthesis equals 0 end cell row blank cell z equals negative 3 comma z equals fraction numerator 4 plus-or-minus square root of 16 minus 20 end root over denominator 2 end fraction equals 2 plus-or-minus i end cell end table end style

إذن لهذه المعادلة ثلاثة جذور هي:

إذن لهذه المعادلة ثلاثة جذور هي: -3 , 2 + i , 2 - i

 

أتحقق من فهمي صفحة 165

إذا كان: 2 - i هو أحد جذور المعادلة: x2 + ax + b = 0، فأجد قيمة كل من a و b .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x equals 2 plus-or-minus i end cell row blank cell x minus 2 equals plus-or-minus i end cell row blank cell left parenthesis x minus 2 right parenthesis squared equals negative 1 end cell row blank cell x squared minus 4 x plus 4 equals negative 1 end cell row blank cell x squared minus 4 x plus 5 equals 0 end cell end table end style

بمقارنة هذه المعادلة مع المعادلة المعطاة (x2 + ax + b = 0) نجد أنّ: a = -4 , b = 5

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات