حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل

أتدرب وأحل المسائل

المساحات والحجوم

أجد مساحة المنطقة المظللة في كل من التمثيلات البيانية الآتية:

التمثيل البياني 1

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals integral subscript negative 1 end subscript superscript 1 left parenthesis x squared minus left parenthesis negative 2 x to the power of 4 right parenthesis right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 1 left parenthesis x squared plus 2 x to the power of 4 right parenthesis d x end cell row blank cell equals left parenthesis 1 third x cubed plus 2 over 5 x to the power of 5 right parenthesis vertical line subscript negative 1 end subscript superscript 1 end cell row blank cell equals left parenthesis 1 third plus 2 over 5 right parenthesis minus left parenthesis negative 1 third minus 2 over 5 right parenthesis end cell row blank cell equals 22 over 15 end cell end table end style

التمثيل البياني 2

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row A cell equals integral subscript negative 2 end subscript superscript 0 left parenthesis x cubed minus 3 x minus x right parenthesis d x plus integral subscript 0 superscript 2 left parenthesis x minus left parenthesis x cubed minus 3 x right parenthesis right parenthesis d x end cell row blank cell equals integral subscript negative 2 end subscript superscript 0 left parenthesis x cubed minus 4 x right parenthesis d x plus integral subscript 0 superscript 2 left parenthesis 4 x minus x cubed right parenthesis d x end cell row blank cell equals left parenthesis 1 fourth x to the power of 4 minus 2 x squared right parenthesis vertical line subscript negative 2 end subscript superscript 0 plus left parenthesis 2 x squared minus 1 fourth x to the power of 4 right parenthesis vertical line subscript 0 superscript 2 end cell row blank cell equals left parenthesis 0 right parenthesis minus left parenthesis 4 minus 8 right parenthesis plus left parenthesis 8 minus 4 right parenthesis minus left parenthesis 0 right parenthesis end cell row blank cell equals 8 end cell end table end style

التمثيل البياني 3

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals integral subscript 0 superscript 3 left parenthesis e to the power of 0.5 x end exponent minus e to the power of negative 0.5 x end exponent right parenthesis d x end cell cell equals left parenthesis 2 e to the power of 0.5 x end exponent plus 2 e to the power of negative 0.5 x end exponent right parenthesis vertical line subscript 0 superscript 3 end cell row blank cell equals left parenthesis 2 e to the power of 1.5 end exponent plus 2 e to the power of negative 1.5 end exponent right parenthesis minus left parenthesis 2 plus 2 right parenthesis end cell row blank cell equals 2 e to the power of 1.5 end exponent plus 2 e to the power of negative 1.5 end exponent minus 4 end cell end table end style

التمثيل البياني 4

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row A cell equals integral subscript 0 superscript pi over 4 end superscript left parenthesis sec squared invisible function application x minus sin invisible function application x right parenthesis d x end cell row blank cell equals left parenthesis tan invisible function application x plus cos invisible function application x right parenthesis vertical line subscript 0 superscript pi over 4 end superscript end cell row blank cell equals left parenthesis 1 plus fraction numerator 1 over denominator square root of 2 end fraction right parenthesis minus left parenthesis 0 plus 1 right parenthesis end cell row blank cell equals fraction numerator 1 over denominator square root of 2 end fraction end cell end table end style

(5) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style g left parenthesis x right parenthesis equals 2 x squared comma f left parenthesis x right parenthesis equals 1 half x squared plus 6 colon end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis not stretchy rightwards double arrow 1 half x squared plus 6 equals 2 x squared not stretchy rightwards double arrow 3 over 2 x squared equals 6 not stretchy rightwards double arrow x squared equals 4 end cell row blank cell not stretchy rightwards double arrow x equals 2 comma space of 1em x equals negative 2 end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals integral subscript negative 2 end subscript superscript 2 left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis d x equals end cell cell integral subscript negative 2 end subscript superscript 2 left parenthesis 1 half x squared plus 6 minus 2 x squared right parenthesis d x end cell row cell equals integral subscript negative 2 end subscript superscript 2 left parenthesis 6 minus 3 over 2 x squared right parenthesis d x end cell cell equals left parenthesis 6 x minus 1 half x cubed right parenthesis vertical line subscript negative 2 end subscript superscript 2 end cell row equals cell left parenthesis 12 minus 4 right parenthesis minus left parenthesis negative 12 plus 4 right parenthesis end cell row equals 16 end table end cell end table end style

(6) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style g left parenthesis x right parenthesis equals 3 to the power of x comma ، f left parenthesis x right parenthesis equals 4 to the power of x end styl، والمستقيم begin mathsize 20px style x equals 1 end style في الربع الأول.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis not stretchy ⟹ 3 to the power of x equals 4 to the power of x not stretchy ⟹ x equals 0 end cell row blank cell A equals integral subscript 0 superscript 1 left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis d x equals integral subscript 0 superscript 1 left parenthesis 4 to the power of x minus 3 to the power of x right parenthesis d x equals left parenthesis fraction numerator 4 to the power of x over denominator ln invisible function application 4 end fraction minus fraction numerator 3 to the power of x over denominator ln invisible function application 3 end fraction right parenthesis vertical line subscript 0 superscript 1 end cell row blank cell equals left parenthesis fraction numerator 4 over denominator ln invisible function application 4 end fraction minus fraction numerator 3 over denominator ln invisible function application 3 end fraction right parenthesis minus left parenthesis fraction numerator 1 over denominator ln invisible function application 4 end fraction minus fraction numerator 1 over denominator ln invisible function application 3 end fraction right parenthesis end cell row blank cell equals fraction numerator 3 over denominator ln invisible function application 4 end fraction minus fraction numerator 2 over denominator ln invisible function application 3 end fraction almost equal to 0.344 end cell end table end s

(7) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style g left parenthesis x right parenthesis equals cos invisible function application x comma f left parenthesis x right parenthesis equals e to the power of x end style، والمستقيم begin mathsize 20px style x equals pi over 2 end style، في الربع الأول.

begin mathsize 20px style f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis not stretchy ⟹ e to the power of x equals cos invisible function application x end sty

نعلم من حلول هذه المعادلة الحل غير السالب: begin mathsize 20px style x equals 0 end style

في الربع الأول يكون begin mathsize 20px style cos invisible function application x less or equal than 1 end style بينما begin mathsize 20px style e to the power of x greater or equal than 1 end style، إذن begin mathsize 20px style e to the power of x greater or equal than cos invisible function application x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals integral subscript 0 superscript pi over 2 end superscript left parenthesis e to the power of x minus cos invisible function application x right parenthesis d x end cell cell equals left parenthesis e to the power of x minus sin invisible function application x right parenthesis vertical line subscript 0 superscript pi over 2 end superscript end cell row blank cell equals left parenthesis e to the power of pi over 2 end exponent minus 1 right parenthesis minus left parenthesis 1 minus 0 right parenthesis end cell row blank cell equals e to the power of pi over 2 end exponent minus 2 end cell end table end style

(8) أجد المساحة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style g left parenthesis x right parenthesis equals x to the power of 4 comma f left parenthesis x right parenthesis equals vertical line x vertical line end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell g left parenthesis x right parenthesis equals f left parenthesis x right parenthesis not stretchy ⟹ x to the power of 4 equals vertical line x vertical line not stretchy ⟹ x to the power of 4 equals x space of 1em text or end text x to the power of 4 equals negative x end cell row blank cell x to the power of 4 equals x not stretchy ⟹ x to the power of 4 minus x equals 0 not stretchy rightwards double arrow x left parenthesis x cubed minus 1 right parenthesis equals 0 not stretchy ⟹ x equals 0 comma x equals 1 end cell row blank cell x to the power of 4 equals negative x not stretchy rightwards double arrow x to the power of 4 plus x equals 0 not stretchy rightwards double arrow x left parenthesis x cubed plus 1 right parenthesis equals 0 not stretchy rightwards double arrow x equals 0 comma x equals negative 1 end cell end table e

إذن، يتقاطع المنحنيان عند begin mathsize 20px style x equals negative 1 comma x equals 0 comma x equals 1 end style، ويكون في الفترتين begin mathsize 20px style f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis end style

begin mathsize 20px style A equals integral subscript negative 1 end subscript superscript 1 left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis d x end style

 نجزئ هذا التكامل بسبب تغيير قاعدة begin mathsize 20px style f left parenthesis x right parenthesis end style حول begin mathsize 20px style x end style، نحسب هذه المساحة على النحو الآتي:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row A cell equals integral subscript negative 1 end subscript superscript 0 left parenthesis negative x minus x to the power of 4 right parenthesis d x plus integral subscript 0 superscript 1 left parenthesis x minus x to the power of 4 right parenthesis d x end cell row blank cell equals left parenthesis negative 1 half x squared minus 1 fifth x to the power of 5 right parenthesis vertical line subscript negative 1 end subscript superscript 0 plus left parenthesis 1 half x squared minus 1 fifth x to the power of 5 right parenthesis vertical line subscript 0 superscript 1 end cell row blank cell equals left parenthesis 0 right parenthesis minus left parenthesis negative 1 half plus 1 fifth right parenthesis plus left parenthesis 1 half minus 1 fifth right parenthesis minus left parenthesis 0 right parenthesis end cell row blank cell equals 3 over 5 end cell end table end style

(9) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style g left parenthesis x right parenthesis equals negative x squared plus 2 x comma f left parenthesis x right parenthesis equals 3 x cubed minus x squared minus 10 x end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis end cell cell not stretchy rightwards double arrow 3 x cubed minus x squared minus 10 x equals negative x squared plus 2 x end cell row blank cell not stretchy rightwards double arrow 3 x cubed minus 12 x equals 0 not stretchy rightwards double arrow 3 x left parenthesis x squared minus 4 right parenthesis equals 0 end cell row blank cell not stretchy rightwards double arrow x equals 0 comma x equals negative 2 comma x equals 2 end cell end table end style

بحساب قيمتي الاقترانين عند عدد بين 2- و0 مثل 1- نجد أن:

begin mathsize 20px style f left parenthesis negative 1 right parenthesis equals negative 3 minus 1 plus 10 equals 6 comma g left parenthesis negative 1 right parenthesis equals negative 1 minus 2 equals negative 3 end style

begin mathsize 20px style f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis not stretchy leftwards arrow end style في الفترة [2,0-]

بحساب قيمتي الاقترانين عند عدد بين 0 و2 مثل 1 نجد أن:

begin mathsize 20px style f left parenthesis 1 right parenthesis equals 3 minus 1 minus 10 equals negative 8 comma g left parenthesis 1 right parenthesis equals negative 1 plus 2 equals 1 end style

begin mathsize 20px style f left parenthesis x right parenthesis less than g left parenthesis x right parenthesis not stretchy leftwards arrow end style في الفترة [0,2]

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row A cell equals integral subscript negative 2 end subscript superscript 0 left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis d x plus integral subscript 0 superscript 2 left parenthesis g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis right parenthesis d x end cell row blank cell equals integral subscript negative 2 end subscript superscript 0 left parenthesis 3 x cubed minus x squared minus 10 x minus left parenthesis negative x squared plus 2 x right parenthesis right parenthesis d x plus integral subscript 0 superscript 2 left parenthesis negative x squared plus 2 x minus left parenthesis 3 x cubed minus x squared minus 10 x right parenthesis right parenthesis d x end cell row blank cell equals integral subscript negative 2 end subscript superscript 0 left parenthesis 3 x cubed minus 12 x right parenthesis d x plus integral subscript 0 superscript 2 left parenthesis 12 x minus 3 x cubed right parenthesis d x end cell row blank cell equals left parenthesis 3 over 4 x to the power of 4 minus 6 x squared right parenthesis vertical line subscript negative 2 end subscript superscript 0 plus left parenthesis 6 x squared minus 3 over 4 x to the power of 4 right parenthesis vertical line subscript 0 superscript 2 end cell row blank cell equals left parenthesis 0 right parenthesis minus left parenthesis 12 minus 24 right parenthesis plus left parenthesis 24 minus 12 right parenthesis minus left parenthesis 0 right parenthesis end cell row blank cell equals 24 end cell end table end style

(10) أجد مساحة المنطقة المحصورة بيـن منحنيي الاقترانينbegin mathsize 20px style left parenthesis x right parenthesis equals x squared comma f left parenthesis x right parenthesis equals e to the power of x end style، والمستقيمين: begin mathsize 20px style x equals 0 comma x equals 1 end style.

begin mathsize 20px style f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis not stretchy ⟹ e to the power of x equals x squared end sty

يمكن استعمال الآلة الحاسبة لمعرفة أن begin mathsize 20px style f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis end style في الفترة begin mathsize 20px style left square bracket 0 comma straight infinity right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals integral subscript 0 superscript 1 left parenthesis e to the power of x minus x squared right parenthesis d x end cell cell equals left parenthesis e to the power of x minus 1 third x cubed right parenthesis vertical line subscript 0 superscript 1 end cell row blank cell equals left parenthesis e minus 1 third right parenthesis minus left parenthesis 1 minus 0 right parenthesis end cell row blank cell equals e minus 4 over 3 end cell end table end style

(11) أجد مساحة المنطقة المحصورة بين منحيي الاقترانين: begin mathsize 20px style h left parenthesis x right parenthesis equals 4 square root of x comma f left parenthesis x right parenthesis equals 1 half x squared end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals h left parenthesis x right parenthesis not stretchy rightwards double arrow 1 half x squared equals 4 square root of x not stretchy rightwards double arrow 1 fourth x to the power of 4 equals 16 x not stretchy rightwards double arrow x to the power of 4 minus 64 x equals 0 end cell row blank cell not stretchy rightwards double arrow x left parenthesis x cubed minus 64 right parenthesis equals 0 not stretchy rightwards double arrow x equals 0 comma x equals 4 end cell end table end style

begin mathsize 20px style h left parenthesis x right parenthesis greater than f left parenthesis x right parenthesis end style في الفترة (0,4)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row A cell equals integral subscript 0 superscript 4 left parenthesis h left parenthesis x right parenthesis minus f left parenthesis x right parenthesis right parenthesis d x equals integral subscript 0 superscript 4 left parenthesis 4 square root of x minus 1 half x squared right parenthesis d x end cell row blank cell equals left parenthesis 8 over 3 x to the power of 3 over 2 end exponent minus 1 over 6 x cubed right parenthesis vertical line subscript 0 superscript 4 equals left parenthesis 64 over 3 minus 32 over 3 right parenthesis minus left parenthesis 0 right parenthesis equals 32 over 3 end cell end table end style

منحنى اقتران(12) يبين الشكل التالي منحنى الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals x squared end style. إذا كان إحداثيا النقطة begin mathsize 20px style A end style هما begin mathsize 20px style A left parenthesis a comma a squared right parenthesis end style، فأثبت أن مساحة المنطقة المحصورة بين منحنى الاقتران begin mathsize 20px style f left parenthesis x right parenthesis end style والقطعة المستقيمة Error converting from MathML to accessible text. تساوي ثلثي مساحة المستطيل begin mathsize 20px style A B C D end style.

من التماثل فإن begin mathsize 20px style B left parenthesis negative a comma a squared right parenthesis end style

لتكن مساحة المنطقة المطلوبة:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript negative a end subscript superscript a left parenthesis a squared minus x squared right parenthesis d x equals left parenthesis a squared x minus 1 third x cubed right parenthesis vertical line subscript negative a end subscript superscript a end cell row blank cell equals left parenthesis a cubed minus 1 third a cubed right parenthesis minus left parenthesis negative a cubed plus 1 third a cubed right parenthesis equals 2 a cubed minus 2 over 3 a cubed equals 4 over 3 a cubed end cell end table end style

مساحة المستطيل ABCD هي: begin mathsize 20px style 2 a cross times a squared equals 2 a cubed end style

إذن، المساحة بين المنحنى والقطعة المستقيمة AB تساوي begin mathsize 20px style 2 over 3 end style مساحة المستطيل ABCD.

منحنى الاقتران(13) يبين الشكل المجاور منحنى الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals 2 over x squared plus x end style. إذا كان الإحداثي begin mathsize 20px style x end style لكل من النقطة begin mathsize 20px style A end style والنقطة begin mathsize 20px style B end style هو begin mathsize 20px style 1 half end style وbegin mathsize 20px style 2 end style على الترتيب، فأجد مساحة المنطقة المحصورة بين المستقيم begin mathsize 20px style A B end style ومنحنى الاقتران begin mathsize 20px style f left parenthesis x right parenthesis end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A left parenthesis 1 half comma f left parenthesis 1 half right parenthesis right parenthesis equals left parenthesis 1 half comma 17 over 2 right parenthesis end cell row blank cell B left parenthesis 2 comma f left parenthesis 2 right parenthesis right parenthesis equals left parenthesis 2 comma 5 over 2 right parenthesis end cell end table end style

ميل AB:

begin mathsize 20px style fraction numerator 17 over 2 minus 5 over 2 over denominator 1 half minus 2 end fraction equals negative 4 end style

معادلة المستقيم AB: 

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y minus 5 over 2 equals negative 4 left parenthesis x minus 2 right parenthesis end cell row blank cell not stretchy rightwards double arrow y equals 21 over 2 minus 4 x end cell end table end style

المساحة المطلوبة هي:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript 1 half end subscript superscript 2 left parenthesis 21 over 2 minus 4 x minus left parenthesis 2 x to the power of negative 2 end exponent plus x right parenthesis right parenthesis d x equals integral subscript 1 half end subscript superscript 2 left parenthesis 21 over 2 minus 5 x minus 2 x to the power of negative 2 end exponent right parenthesis d x end cell row blank cell space of 1em equals left parenthesis 21 over 2 x minus 5 over 2 x squared plus 2 over x right parenthesis vertical line subscript 1 half end subscript superscript 2 equals 21 minus 10 plus 1 minus left parenthesis 21 over 4 minus 5 over 8 plus 4 right parenthesis equals 27 over 8 end cell end table end style

الشكليبين الشكل المجاور منحنى السرعة المتجهة - الزمن لجسيم يتحرك على المحور begin mathsize 20px style bold italic x end style في الفترة الزمنية begin mathsize 20px style begin bold style stretchy left square bracket 0 comma 8 stretchy right square bracket end style end style، إذا بدأ الجسيم الحركة من begin mathsize 20px style bold italic x bold equals bold 5 end style عندما begin mathsize 20px style bold italic t bold equals bold 0 end style، فأجد كلاً مما يأتي:

(14) إزاحة الجسيم في الفترة الزمنية المعطاة.

لتكن الإزاحة D

begin mathsize 20px style D equals s left parenthesis 8 right parenthesis minus s left parenthesis 0 right parenthesis equals integral subscript 0 superscript 8 v left parenthesis t right parenthesis d t equals integral subscript 0 superscript 1 v left parenthesis t right parenthesis d t plus integral subscript 1 superscript 4 v left parenthesis t right parenthesis d t plus integral subscript 4 superscript 8 v left parenthesis t right parenthesis d t end style

begin mathsize 20px style integral subscript 0 superscript 1 v left parenthesis t right parenthesis d t end style يساوي مساحة المثلث الأيسر في الرسم البياني وهي:

begin mathsize 20px style 1 half left parenthesis 1 right parenthesis left parenthesis 2 right parenthesis equals 1 end style

begin mathsize 20px style integral subscript 1 superscript 4 v left parenthesis t right parenthesis d t end style يساوي معكوس مساحة شبه المنحرف في الرسم البياني فهو يساوي:

begin mathsize 20px style negative 1 half left parenthesis 1 plus 3 right parenthesis left parenthesis 2 right parenthesis equals negative 4 end style

begin mathsize 20px style integral subscript 4 superscript 8 v left parenthesis t right parenthesis d t end style يساوي مساحة المثلث الأيمن في الرسم البياني وهي:

begin mathsize 20px style 1 half left parenthesis 4 right parenthesis left parenthesis 4 right parenthesis equals 8 end style

إذن، إزاحة الجسيم هي: begin mathsize 20px style s left parenthesis 8 right parenthesis minus s left parenthesis 0 right parenthesis equals 1 plus left parenthesis negative 4 right parenthesis plus 8 equals 5 straight m end style

(15) المسافة التي قطعها الجسيم في الفترة الزمنية المعطاة.

المسافة التي قطعها الجسيم هي: begin mathsize 20px style integral subscript 0 superscript 8 vertical line v left parenthesis t right parenthesis vertical line d t end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 0 superscript 8 vertical line v left parenthesis t right parenthesis vertical line d t end cell cell equals integral subscript 0 superscript 1 vertical line v left parenthesis t right parenthesis vertical line d t plus integral subscript 1 superscript 4 vertical line v left parenthesis t right parenthesis vertical line d t plus integral subscript 4 superscript 8 vertical line v left parenthesis t right parenthesis vertical line d t end cell row blank cell equals 1 plus 4 plus 8 equals 13 straight m end cell end table end style

(16) الموقع النهائي للجسيم.

begin mathsize 20px style s left parenthesis 8 right parenthesis minus s left parenthesis 0 right parenthesis equals 5 end style

وبتعويض begin mathsize 20px style s left parenthesis 0 right parenthesis equals 5 end style نجد أن:

begin mathsize 20px style s left parenthesis 8 right parenthesis minus 5 equals 5 not stretchy rightwards double arrow s left parenthesis 8 right parenthesis equals 10 straight m end style

منحنيي الاقترانينيبين الشكل المجاور منحنيي الاقترانين: begin mathsize 20px style bold f bold left parenthesis bold x bold right parenthesis bold equals bold x to the power of bold 2 bold minus bold 10 bold x bold plus bold 25 bold comma bold italic g bold left parenthesis bold italic x bold right parenthesis bold equals bold 5 bold plus bold 4 bold italic x bold minus bold italic x to the power of bold 2 end style، معتمداً هذا الشكل، أجيب عن السؤالين الآتيين تباعاً:

(17) أجد إحداثيي كل من النقطة begin mathsize 20px style A end style، والنقطة begin mathsize 20px style B end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis not stretchy rightwards double arrow x squared minus 10 x plus 25 equals 5 plus 4 x minus x squared end cell row blank cell not stretchy rightwards double arrow 2 x squared minus 14 x plus 20 equals 0 not stretchy rightwards double arrow x squared minus 7 x plus 10 equals 0 end cell row blank cell not stretchy rightwards double arrow left parenthesis x minus 5 right parenthesis left parenthesis x minus 2 right parenthesis equals 0 not stretchy rightwards double arrow x equals 5 comma x equals 2 end cell row blank cell not stretchy rightwards double arrow A left parenthesis 2 comma 9 right parenthesis comma B left parenthesis 5 comma 0 right parenthesis end cell end table end style

(18) أجد حجم المجسّم الناتج من دوران المنطقة المظللة حول المحور begin mathsize 20px style x end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row V cell equals integral subscript 2 superscript 5 pi left parenthesis left parenthesis 5 plus 4 x minus x squared right parenthesis squared minus left parenthesis x squared minus 10 x plus 25 right parenthesis squared right parenthesis d x end cell row V cell equals integral subscript 2 superscript 5 pi left parenthesis 12 x cubed minus 144 x squared plus 540 x minus 600 right parenthesis d x end cell row blank cell equals 12 pi integral subscript 2 superscript 5 left parenthesis x cubed minus 12 x squared plus 45 x minus 50 right parenthesis d x end cell row blank cell equals 12 pi left parenthesis 1 fourth x to the power of 4 minus 4 x cubed plus 45 over 2 x squared minus 50 x right parenthesis vertical line subscript 2 superscript 5 end cell row blank cell equals 12 pi left parenthesis 1 fourth left parenthesis 5 right parenthesis to the power of 4 minus 4 left parenthesis 5 right parenthesis cubed plus 45 over 2 left parenthesis 5 right parenthesis squared minus 50 left parenthesis 5 right parenthesis right parenthesis end cell row blank cell space of 1em minus left parenthesis 1 fourth left parenthesis 2 right parenthesis to the power of 4 minus 4 left parenthesis 2 right parenthesis cubed plus 45 over 2 left parenthesis 2 right parenthesis squared minus 50 left parenthesis 2 right parenthesis right parenthesis equals 81 pi end cell end table end style

(19) أجد حجم المجسّم الناتج من دوران المنطقة المحصورة بين منحنى الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals square root of sin invisible function application x end root end style في الفترة begin mathsize 20px style open square brackets 0 comma straight pi close square brackets end style، والمحور begin mathsize 20px style x end style، حول المحور begin mathsize 20px style x end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell V equals integral subscript 0 superscript pi pi left parenthesis f left parenthesis x right parenthesis right parenthesis squared d x equals pi integral subscript 0 superscript pi sin invisible function application x d x end cell cell equals negative pi cos invisible function application x vertical line subscript 0 superscript pi end cell row blank cell equals negative pi left parenthesis cos invisible function application pi minus cos invisible function application 0 right parenthesis equals 2 pi end cell end table end style

(20) أجد حجم المجسّم الناتج من دوران المنطقة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style g left parenthesis x right parenthesis equals x cubed comma f left parenthesis x right parenthesis equals square root of x end style حول المحور begin mathsize 20px style x end style.

begin mathsize 20px style x cubed equals square root of x not stretchy rightwards double arrow x to the power of 6 equals x not stretchy rightwards double arrow x to the power of 6 minus x equals 0 not stretchy rightwards double arrow x left parenthesis x to the power of 5 minus 1 right parenthesis equals 0 not stretchy rightwards double arrow x equals 0 comma x equals 1 end style

لكل begin mathsize 20px style x element of left parenthesis 0 comma 1 right parenthesis end style يكون begin mathsize 20px style square root of x greater than x cubed end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row V cell equals integral subscript 0 superscript 1 pi left parenthesis f squared left parenthesis x right parenthesis minus g squared left parenthesis x right parenthesis right parenthesis d x equals pi integral subscript 0 superscript 1 left parenthesis x minus x to the power of 6 right parenthesis d x end cell row blank cell equals pi left parenthesis 1 half x squared minus 1 over 7 x to the power of 7 right parenthesis vertical line subscript 0 superscript 1 equals pi left parenthesis 1 half minus 1 over 7 minus 0 right parenthesis equals fraction numerator 5 pi over denominator 14 end fraction end cell end table end style

(21) أجد حجم المجسم الناتج من دوران المنطقة المحصورة بين منحنى الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals 1 plus sec invisible function application x end style، في الفترة begin mathsize 20px style left parenthesis negative pi over 2 comma pi over 2 right parenthesis end style  والمستقيم begin mathsize 20px style y equals 3 end style حول المحور begin mathsize 20px style x end style.

begin mathsize 20px style 1 plus sec invisible function application x equals 3 not stretchy rightwards double arrow sec invisible function application x equals 2 not stretchy rightwards double arrow cos invisible function application x equals 1 half not stretchy rightwards double arrow x equals negative pi over 3 comma x equals pi over 3 end style

نلاحظ أن المنحنيين يقعان فوق المحور x وأن begin mathsize 20px style f left parenthesis x right parenthesis equals 1 plus sec invisible function application x less than 3 end style في الفترة begin mathsize 20px style left parenthesis negative pi over 3 comma pi over 3 right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral sec invisible function application x d x equals integral sec invisible function application x cross times fraction numerator sec invisible function application x plus tan invisible function application x over denominator sec invisible function application x plus tan invisible function application x end fraction d x end cell row blank cell equals integral fraction numerator sec squared invisible function application x plus sec invisible function application x tan invisible function application x over denominator sec invisible function application x plus tan invisible function application x end fraction d x equals ln invisible function application vertical line sec invisible function application x plus tan invisible function application x vertical line plus C end cell row blank cell V equals integral subscript negative pi over 3 end subscript superscript pi over 3 end superscript pi left parenthesis 9 minus left parenthesis 1 plus sec invisible function application x right parenthesis squared right parenthesis d x equals pi integral subscript negative pi over 3 end subscript superscript pi over 3 end superscript left parenthesis 9 minus left parenthesis 1 plus 2 sec invisible function application x plus sec squared invisible function application x right parenthesis right parenthesis d x end cell row blank cell equals pi integral subscript negative pi over 3 end subscript superscript pi over 3 end superscript left parenthesis 8 minus 2 sec invisible function application x minus sec squared invisible function application x right parenthesis d x end cell row blank cell equals pi left parenthesis 8 x minus 2 ln invisible function application vertical line sec invisible function application x plus tan invisible function application x vertical line minus tan invisible function application x right parenthesis vertical line subscript negative pi over 3 end subscript superscript pi over 3 end superscript end cell row blank cell equals pi left parenthesis left parenthesis fraction numerator 8 pi over denominator 3 end fraction minus 2 ln invisible function application left parenthesis 2 plus square root of 3 right parenthesis minus square root of 3 right parenthesis minus left parenthesis fraction numerator negative 8 pi over denominator 3 end fraction minus 2 ln invisible function application left parenthesis 2 minus square root of 3 right parenthesis plus square root of 3 right parenthesis right parenthesis end cell row blank cell equals pi left parenthesis fraction numerator 16 pi over denominator 3 end fraction plus 2 ln invisible function application left parenthesis fraction numerator 2 minus square root of 3 over denominator 2 plus square root of 3 end fraction right parenthesis minus 2 square root of 3 right parenthesis end cell end table end style

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات