حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل

أتدرب وأحل المسائل

قاعدة السلسلة

أتدرب وأحل المسائل

أجد مشتقة كل اقتران ممّا يأتي:

(1) f(x) = (1 + 2x)4

f(x) = 4 (1 + 2x)3 (2)

         = 8 (1 + 2x)3

(2) f(x) = (3 – 2x2)-5

f(x) = -5 (3 – 2x2)-6 (-4x)

         = 20x (3 – 2x2)-6

         = right to left rightwards harpoon over leftwards harpoon

(3) f(x) = right to left rightwards harpoon over leftwards harpoon

f(x) = begin mathsize 20px style 3 over 2 end style right to left rightwards harpoon over leftwards harpoon (2x – 7)

     = begin mathsize 20px style 3 over 2 end style (2x – 7) right to left rightwards harpoon over leftwards harpoon

(4) f(x) = right to left rightwards harpoon over leftwards harpoon

f(x) = right to left rightwards harpoon over leftwards harpoon

(5) f(x) = 4(2 + 8x)4

f(x) =  16(2 + 8x)3 (8)

         = 128(2 + 8x)3

(6) f(x) = right to left rightwards harpoon over leftwards harpoon

f(x) = right to left rightwards harpoon over leftwards harpoon

f(x) = -begin mathsize 20px style 1 third end style right to left rightwards harpoon over leftwards harpoon  (4)

        = -begin mathsize 20px style 4 over 3 end style right to left rightwards harpoon over leftwards harpoon

        = right to left rightwards harpoon over leftwards harpoon

(7) f(x) = right to left rightwards harpoon over leftwards harpoon

f(x) = right to left rightwards harpoon over leftwards harpoon

(8) f(x) = begin mathsize 20px style square root of x end style + (x – 3)2

f(x) = begin mathsize 20px style fraction numerator 1 over denominator 2 square root of x end fraction end style + 2(x – 3)

(9) f(x) = right to left rightwards harpoon over leftwards harpoon + (4 – x)2

f(x) = right to left rightwards harpoon over leftwards harpoon + (4 – x)2

f(x) = begin mathsize 20px style 1 third end styleright to left rightwards harpoon over leftwards harpoon (2 – 5x4) + 2(4 – x) (-1)

         = right to left rightwards harpoon over leftwards harpoon - 8 + 2x

(10) f(x) = (begin mathsize 20px style square root of x end style + 5)4

f(x) = 4 (begin mathsize 20px style square root of x end style + 5)3 x begin mathsize 20px style fraction numerator 1 over denominator 2 square root of x end fraction end style

         = right to left rightwards harpoon over leftwards harpoon

(11) f(x) = right to left rightwards harpoon over leftwards harpoon

f(x) = right to left rightwards harpoon over leftwards harpoon

         = right to left rightwards harpoon over leftwards harpoon = 3 right to left rightwards harpoon over leftwards harpoon

(12) f(x) = (2x3 – 3x2 + 4x + 1)5

f(x) = 5(2x3 – 3x2 + 4x + 1)4 (6x2 – 6x + 4)

 

أجد مشتقة كل اقتران ممّا يأتي عند قيمة x المعطاة:

(13) f(x) = right to left rightwards harpoon over leftwards harpoon , x = begin mathsize 20px style 1 fourth end style

f(x) = (4x + 1)-2

f(x) = -2 (4x + 1)-3 (4)

        = right to left rightwards harpoon over leftwards harpoon

f(begin mathsize 20px style 1 fourth end style) = -right to left rightwards harpoon over leftwards harpoon = -1

(14) f(x) = right to left rightwards harpoon over leftwards harpoon , x = 3

f(x) = right to left rightwards harpoon over leftwards harpoon

f(3) = right to left rightwards harpoon over leftwards harpoon = -begin mathsize 20px style 3 over 4 end style

 

أستعمل قاعدة السلسلة في إيجاد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style لكلّ ممّا يأتي:

(15) right to left rightwards harpoon over leftwards harpoon

right to left rightwards harpoon over leftwards harpoon

(16) right to left rightwards harpoon over leftwards harpoon

right to left rightwards harpoon over leftwards harpoon

 

أستعمل قاعدة السلسلة في إيجاد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style لكلّ ممّا يأتي عند قيمة x المعطاة:

(17) right to left rightwards harpoon over leftwards harpoon

right to left rightwards harpoon over leftwards harpoon

right to left rightwards harpoon over leftwards harpoon

(18) right to left rightwards harpoon over leftwards harpoon

right to left rightwards harpoon over leftwards harpoon

right to left rightwards harpoon over leftwards harpoon

 

صناعة: يمثل الاقتران: C(x) = 1000 right to left rightwards harpoon over leftwards harpoon  تكلفة إنتاج x من منتج معين (بآلاف الدنانير):

(19) أجد معدل تغير تكلفة الإنتاج بالنسبة إلى عدد القطع المُنتجة.

right to left rightwards harpoon over leftwards harpoon

(20) أجد معدل تغير تكلفة الإنتاج بالنسبة إلى عدد القطع المُنتجة عندما يكون عدد القطع المنتجة 20 قطعة.

right to left rightwards harpoon over leftwards harpoon

 

علوم: يمثل الاقتران:N(t) = 400 (1 - begin mathsize 20px style 3 over left parenthesis t squared plus 2 right parenthesis squared end style)  عدد الخلايا البكتيرية بعد t يوماً في مجتمع بكتيري:

(21) أجد معدل تغير N بالنسبة إلى t عندما t = 1 .

right to left rightwards harpoon over leftwards harpoon

(22) أجد معدل تغير N بالنسبة إلى t عندما t = 4 .

right to left rightwards harpoon over leftwards harpoon

 

إذا كان: right to left rightwards harpoon over leftwards harpoon ، فأجد مشتقة كل اقتران ممّا يأتي عندما x = 3 :

(23) begin mathsize 20px style f left parenthesis x right parenthesis equals g left parenthesis h left parenthesis x right parenthesis right parenthesis end style

right to left rightwards harpoon over leftwards harpoon

(24) begin mathsize 20px style f left parenthesis x right parenthesis equals left parenthesis h left parenthesis x right parenthesis right parenthesis cubed end style

right to left rightwards harpoon over leftwards harpoon

إعداد : شبكة منهاجي التعليمية

21 / 10 / 2022

النقاشات