حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

التكامل بالتعويض

منحنى الاقترانتبرير: إذا كان الشكل المجاور بمثل منحنى الاقتران: begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis bold equals bold 3 bold italic c bold italic o bold italic s bold invisible function application bold italic x square root of bold s bold i bold n bold invisible function application bold x bold plus bold 1 end root end style، فأجيب عن الأسئلة الآتية تباعاً:

(40) أجد إحداثيي كل من النقاط: begin mathsize 20px style A comma B comma C comma D end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals 0 not stretchy rightwards double arrow 3 cos invisible function application x square root of 1 plus sin invisible function application x end root equals 0 end cell row blank cell cos invisible function application x equals 0 not stretchy rightwards double arrow x equals pi over 2 plus 2 n pi comma n element of straight integer numbers comma x equals fraction numerator 3 pi over denominator 2 end fraction plus 2 n pi comma n element of straight integer numbers end cell row blank cell sin invisible function application x equals negative 1 not stretchy rightwards double arrow x equals fraction numerator 3 pi over denominator 2 end fraction plus 2 n pi comma n element of straight integer numbers end cell end table end style

يوجد عدد لا نهائي من الحلول لهاتين المعادلتين، نريد أصغر حلين موجبين (الإحداثي begin mathsize 20px style x end style للنقطتين begin mathsize 20px style C comma B end style) وأكبر حل ساالب (الإحداثي begin mathsize 20px style x end style للنقطة begin mathsize 20px style A end style).

أصغر حلين موجبين هما: begin mathsize 20px style x equals pi over 2 comma x equals fraction numerator 3 pi over denominator 2 end fraction end style، بوضع begin mathsize 20px style n equals 0 end style 

begin mathsize 20px style not stretchy rightwards double arrow B left parenthesis pi over 2 comma 0 right parenthesis comma C left parenthesis fraction numerator 3 pi over denominator 2 end fraction comma 0 right parenthesis end style

أكبر حل سالب هو: begin mathsize 20px style x equals negative pi over 2 end style، بوضع begin mathsize 20px style n equals negative 1 end style

begin mathsize 20px style not stretchy ⟹ A left parenthesis negative pi over 2 comma 0 right parenthesis end sty 

أما النقطة begin mathsize 20px style D end style فإحداثياها هما: begin mathsize 20px style D left parenthesis 0 comma f left parenthesis 0 right parenthesis right parenthesis equals left parenthesis 0 comma 3 right parenthesis end style

(41) أجد مساحة المنطقة المظللة.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A equals A subscript 1 plus A subscript 2 equals A left parenthesis R subscript 1 right parenthesis plus A left parenthesis R subscript 2 right parenthesis end cell row blank cell A equals integral subscript negative pi over 2 end subscript superscript pi over 2 end superscript left parenthesis 3 cos invisible function application x square root of 1 plus sin invisible function application x end root right parenthesis d x plus left parenthesis negative integral subscript pi over 2 end subscript superscript fraction numerator 3 pi over denominator 2 end fraction end superscript left parenthesis 3 cos invisible function application x square root of 1 plus sin invisible function application x end root right parenthesis d x right parenthesis end cell row blank cell u equals 1 plus sin invisible function application x not stretchy rightwards double arrow fraction numerator d u over denominator d x end fraction equals cos invisible function application x not stretchy rightwards double arrow d x equals fraction numerator d u over denominator cos invisible function application x end fraction end cell row blank cell x equals negative pi over 2 not stretchy rightwards double arrow u equals 0 end cell row blank cell x equals pi over 2 not stretchy rightwards double arrow u equals 2 end cell row blank cell x equals fraction numerator 3 pi over denominator 2 end fraction not stretchy rightwards double arrow u equals 0 end cell row blank cell A equals 3 integral subscript 0 superscript 2 cos invisible function application x square root of u fraction numerator d u over denominator cos invisible function application x end fraction plus left parenthesis negative 3 integral subscript 2 superscript 0 cos invisible function application x square root of u fraction numerator d u over denominator cos invisible function application x end fraction right parenthesis end cell row blank cell equals 3 integral subscript 0 superscript 2 square root of u d u plus 3 integral subscript 0 superscript 2 square root of u d u end cell row blank cell equals 6 integral subscript 0 superscript 2 square root of u d u equals 4 u to the power of 3 over 2 end exponent vertical line subscript 0 superscript 2 equals 4 left parenthesis 2 square root of 2 minus 0 right parenthesis equals 8 square root of 2 end cell end table end style

(42) أبين أن للمنطقة begin mathsize 20px style R subscript 1 end style والمنطقة begin mathsize 20px style R subscript 2 end style المساحة نفسها. 

من حل السؤال السابق نجد أن:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A left parenthesis R subscript 1 right parenthesis equals integral subscript negative pi over 2 end subscript superscript pi over 2 end superscript left parenthesis 3 cos invisible function application x square root of 1 plus sin invisible function application x end root right parenthesis d x equals integral subscript 0 superscript 2 3 square root of u d u equals 4 square root of 2 end cell row blank cell A left parenthesis R subscript 2 right parenthesis equals negative integral subscript pi over 2 end subscript superscript fraction numerator 3 pi over denominator 2 end fraction end superscript left parenthesis 3 cos invisible function application x square root of 1 plus sin invisible function application x end root right parenthesis d x equals negative integral subscript 2 superscript 0 3 square root of u d u equals 4 square root of 2 end cell row blank cell not stretchy rightwards double arrow A left parenthesis R subscript 1 right parenthesis equals A left parenthesis R subscript 2 right parenthesis end cell end table end style

(43) تحد: أجد قيمة: begin mathsize 20px style integral subscript 1 superscript 16 fraction numerator square root of x over denominator 1 plus fourth root of x cubed end root end fraction d x end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals 1 plus x to the power of 3 over 4 end exponent not stretchy rightwards double arrow fraction numerator d u over denominator d x end fraction equals 3 over 4 x to the power of negative 1 fourth end exponent not stretchy rightwards double arrow d x equals 4 over 3 x to the power of 1 fourth end exponent d u comma space of 1em x to the power of 3 over 4 end exponent equals u minus 1 end cell row blank cell x equals 1 not stretchy rightwards double arrow u equals 2 end cell row blank cell x equals 16 not stretchy rightwards double arrow u equals 9 end cell row blank cell integral subscript 1 superscript 16 fraction numerator square root of x over denominator 1 plus fourth root of x cubed end root end fraction d x equals integral subscript 2 superscript 9 x to the power of 1 half end exponent over u 4 over 3 x to the power of 1 fourth end exponent d u end cell row blank cell equals 4 over 3 integral subscript 2 superscript 9 x to the power of 3 over 4 end exponent over u d u equals 4 over 3 integral subscript 2 superscript 9 fraction numerator u minus 1 over denominator u end fraction d u equals 4 over 3 integral subscript 2 superscript 9 left parenthesis 1 minus 1 over u right parenthesis d u end cell row blank cell equals 4 over 3 left parenthesis u minus ln invisible function application vertical line u vertical line right parenthesis vertical line subscript 2 superscript 9 equals 4 over 3 left parenthesis 7 minus ln invisible function application 9 over 2 right parenthesis end cell end table end style

(44) تبرير: إذا كان begin mathsize 20px style f end style اقتراناً متصلاً، فأثبت أن: begin mathsize 20px style integral subscript 0 superscript pi divided by 2 end superscript f left parenthesis cos invisible function application x right parenthesis d x equals integral subscript 0 superscript pi divided by 2 end superscript f left parenthesis sin invisible function application x right parenthesis d x end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript 0 superscript pi over 2 end superscript f left parenthesis cos invisible function application x right parenthesis d x equals integral subscript 0 superscript pi over 2 end superscript f left parenthesis sin invisible function application left parenthesis pi over 2 minus x right parenthesis right parenthesis d x end cell row blank cell u equals pi over 2 minus x not stretchy rightwards double arrow d x equals negative d u end cell row blank cell x equals 0 not stretchy rightwards double arrow u equals pi over 2 end cell row blank cell x equals pi over 2 not stretchy rightwards double arrow u equals 0 end cell row blank cell integral subscript 0 superscript pi over 2 end superscript f left parenthesis cos invisible function application x right parenthesis d x equals integral subscript pi over 2 end subscript superscript 0 minus f left parenthesis sin invisible function application u right parenthesis d u equals integral subscript 0 superscript pi over 2 end superscript f left parenthesis sin invisible function application u right parenthesis d u equals integral subscript 0 superscript pi over 2 end superscript f left parenthesis sin invisible function application x right parenthesis d x end cell end table end style

(45) تبرير: إذا كان begin mathsize 20px style a comma b end style عددين حقيقيين موجبين، فأثبت أن: begin mathsize 20px style integral subscript 0 superscript 1 x to the power of a left parenthesis 1 minus x right parenthesis to the power of b d x equals integral subscript 0 superscript 1 x to the power of b left parenthesis 1 minus x right parenthesis to the power of a d x end style.

begin mathsize 20px style b b b end style

تحد: أجد كلاً من التكاملات الآتية:

begin mathsize 20px style integral fraction numerator d x over denominator x ln invisible function application x left parenthesis ln invisible function application left parenthesis ln invisible function application x right parenthesis right parenthesis end fraction end style (46)

begin mathsize 20px style b b b end style

begin mathsize 20px style integral fraction numerator sin invisible function application x minus cos invisible function application x over denominator sin invisible function application x plus cos invisible function application x end fraction d x end style (47)

begin mathsize 20px style b b b end style

begin mathsize 20px style integral sin invisible function application 2 x left parenthesis 1 plus sin invisible function application x right parenthesis cubed d x end style (48)

begin mathsize 20px style b b b end style

إعداد : شبكة منهاجي التعليمية

11 / 02 / 2023

النقاشات