حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

التكامل بالأجزاء

التكامل بالأجزاء

أتحقق من فهمي صفحة (63):

أجد كلاً من التكاملات الآتية:

begin mathsize 20px style integral x sin invisible function application x d x end style (a)

begin mathsize 20px style table attributes columnalign left left columnspacing 1em end attributes row cell u equals x end cell cell d v equals sin invisible function application x d x end cell row cell d u equals d x end cell cell v equals negative cos invisible function application x end cell row cell integral x sin invisible function application x d x end cell cell equals negative x cos invisible function application x minus integral negative cos invisible function application x d x end cell row blank cell equals negative x cos invisible function application x plus sin invisible function application x plus C end cell end table end style

begin mathsize 20px style integral x squared ln invisible function application x d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals ln invisible function application x space of 1em d v equals x squared d x end cell row blank cell d u equals 1 over x d x space of 1em v equals 1 third x cubed end cell row blank cell integral x squared ln invisible function application x d x equals 1 third x cubed ln invisible function application x minus integral 1 third x squared d x end cell row blank cell equals 1 third x cubed ln invisible function application x minus 1 over 9 x cubed plus C end cell end table end style

begin mathsize 20px style integral 2 x square root of 7 minus 3 x end root d x end style (c)

ملاحظة: يمكن حل هذه المسألة بطريقة التعويض begin mathsize 20px style u equals 7 minus 3 x space أو space u equals square root of 7 minus 3 x end root end sty

وتالياً حلها بالأجزاء:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals x space of 1em d v equals left parenthesis 7 minus 3 x right parenthesis to the power of 1 half end exponent d x end cell row blank cell d u equals d x space of 1em v equals negative 2 over 9 left parenthesis 7 minus 3 x right parenthesis to the power of 3 over 2 end exponent end cell row blank cell integral x square root of 7 minus 3 x end root d x equals negative 2 over 9 x left parenthesis 7 minus 3 x right parenthesis to the power of 3 over 2 end exponent minus integral negative 2 over 9 left parenthesis 7 minus 3 x right parenthesis to the power of 3 over 2 end exponent d x end cell row blank cell equals negative 2 over 9 x left parenthesis 7 minus 3 x right parenthesis to the power of 3 over 2 end exponent minus 4 over 135 left parenthesis 7 minus 3 x right parenthesis to the power of 5 over 2 end exponent plus C end cell end table end style

begin mathsize 20px style integral 3 x e to the power of 4 x end exponent d x end style (d)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals 3 x space of 1em d v equals e to the power of 4 x end exponent d x end cell row blank cell d u equals 3 d x space of 1em v equals 1 fourth e to the power of 4 x end exponent end cell row blank cell integral 3 x e to the power of 4 x end exponent d x equals 3 over 4 x e to the power of 4 x end exponent minus integral 3 over 4 e to the power of 4 x end exponent d x end cell row blank cell equals 3 over 4 x e to the power of 4 x end exponent minus 3 over 16 e to the power of 4 x end exponent plus C end cell end table end style


تكرار التكامل بالأجزاء

أتحقق من فهمي صفحة (64):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral x squared sin invisible function application x d x end style (a)

begin mathsize 20px style table attributes columnalign left right columnspacing 1em end attributes row cell u equals x squared end cell cell d v equals s i n invisible function application x d x end cell row cell d u equals 2 x d x end cell cell v equals negative c o s invisible function application x end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral x squared s i n invisible function application x d x equals negative x squared c o s invisible function application x minus integral negative 2 x c o s invisible function application x d x end cell row blank cell integral x squared s i n invisible function application x d x equals negative x squared c o s invisible function application x plus integral 2 x c o s invisible function application x d x end cell row blank cell u equals 2 x space of 1em d v equals c o s invisible function application x d x end cell row blank cell d u equals 2 d x space of 1em v equals s i n invisible function application x end cell row blank cell integral x squared s i n invisible function application x d x equals negative x squared c o s invisible function application x plus 2 x s i n invisible function application x minus integral 2 s i n invisible function application x d x end cell row blank cell equals negative x squared c o s invisible function application x plus 2 x s i n invisible function application x plus 2 c o s invisible function application x plus C end cell end table end style

begin mathsize 20px style integral x cubed e to the power of 4 x end exponent d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals x cubed space of 1em d v equals e to the power of 4 x end exponent d x end cell row blank cell d u equals 3 x squared d x space of 1em v equals 1 fourth e to the power of 4 x end exponent end cell row blank cell integral x cubed e to the power of 4 x end exponent d x equals 1 fourth x cubed e to the power of 4 x end exponent minus integral 3 over 4 x squared e to the power of 4 x end exponent d x end cell row blank cell u equals 3 over 4 x squared space of 1em d v equals e to the power of 4 x end exponent d x end cell row blank cell d u equals 3 over 2 x d x space of 1em v equals 1 fourth e to the power of 4 x end exponent end cell row blank cell integral x cubed e to the power of 4 x end exponent d x equals 1 fourth x cubed e to the power of 4 x end exponent minus 3 over 16 x squared e to the power of 4 x end exponent plus integral 3 over 8 x e to the power of 4 x end exponent d x end cell row blank cell u equals 3 over 8 x space of 1em d v equals e to the power of 4 x end exponent d x end cell row blank cell d u equals 3 over 8 d x space of 1em v equals 1 fourth e to the power of 4 x end exponent end cell row blank cell integral x cubed e to the power of 4 x end exponent d x equals 1 fourth x cubed e to the power of 4 x end exponent minus 3 over 16 x squared e to the power of 4 x end exponent plus 3 over 32 x e to the power of 4 x end exponent minus integral 3 over 32 e to the power of 4 x end exponent d x end cell row blank cell equals 1 fourth x cubed e to the power of 4 x end exponent minus 3 over 16 x squared e to the power of 4 x end exponent plus 3 over 32 x e to the power of 4 x end exponent minus 3 over 128 e to the power of 4 x end exponent plus C end cell end table end style


التكاملات الدورية

أتحقق من فهمي صفحة (66):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral fraction numerator sin invisible function application x over denominator e to the power of x end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign center right columnspacing 1em end attributes row cell integral fraction numerator s i n invisible function application x over denominator e to the power of x end fraction d x equals integral s i n invisible function application x e to the power of negative x end exponent d x end cell blank row cell u equals s i n invisible function application x end cell cell d v equals e to the power of negative x end exponent d x end cell row cell d u equals c o s invisible function application x d x end cell cell v equals negative e to the power of negative x end exponent end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral s i n invisible function application x e to the power of negative x end exponent d x equals negative s i n invisible function application x e to the power of negative x end exponent minus integral negative e to the power of negative x end exponent c o s invisible function application x d x end cell row blank cell integral s i n invisible function application x e to the power of negative x end exponent d x equals negative s i n invisible function application x e to the power of negative x end exponent plus integral e to the power of negative x end exponent c o s invisible function application x d x end cell row blank cell u equals c o s invisible function application x space of 1em d v equals e to the power of negative x end exponent d x end cell row blank cell d u equals negative s i n invisible function application x d x space of 1em v equals negative e to the power of negative x end exponent end cell row blank cell integral s i n invisible function application x e to the power of negative x end exponent d x equals negative s i n invisible function application x e to the power of negative x end exponent plus e to the power of negative x end exponent c o s invisible function application x minus integral e to the power of negative x end exponent s i n invisible function application x d x end cell row blank cell not stretchy rightwards double arrow 2 integral s i n invisible function application x e to the power of negative x end exponent d x equals e to the power of negative x end exponent left parenthesis negative s i n invisible function application x plus c o s invisible function application x right parenthesis plus C end cell row blank cell integral s i n invisible function application x e to the power of negative x end exponent d x equals 1 third e to the power of negative x end exponent left parenthesis negative s i n invisible function application x plus c o s invisible function application x right parenthesis plus C end cell end table end style

begin mathsize 20px style integral sec cubed invisible function application x d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals sec invisible function application x space of 1em d v equals sec squared invisible function application x d x end cell row blank cell d u equals sec invisible function application x tan invisible function application x d x space of 1em v equals tan invisible function application x end cell row blank cell integral sec cubed invisible function application x d x equals sec invisible function application x tan invisible function application x minus integral sec invisible function application x tan squared invisible function application x d x end cell row blank cell equals sec invisible function application x tan invisible function application x minus integral sec invisible function application x left parenthesis sec squared invisible function application x minus 1 right parenthesis d x end cell row blank cell equals sec invisible function application x tan invisible function application x minus integral sec cubed invisible function application x d x plus integral sec invisible function application x d x end cell row blank cell 2 integral sec cubed invisible function application x d x equals sec invisible function application x tan invisible function application x plus integral sec invisible function application x d x end cell row blank cell equals sec invisible function application x tan invisible function application x plus integral fraction numerator sec invisible function application x left parenthesis sec invisible function application x plus tan invisible function application x right parenthesis over denominator sec invisible function application x plus tan invisible function application x end fraction d x end cell row blank cell equals sec invisible function application x tan invisible function application x plus integral fraction numerator sec squared invisible function application x plus sec invisible function application x tan invisible function application x over denominator sec invisible function application x plus tan invisible function application x end fraction d x end cell row blank cell equals sec invisible function application x tan invisible function application x plus ln invisible function application vertical line sec invisible function application x plus tan invisible function application x vertical line end cell row blank cell integral sec cubed invisible function application x d x equals 1 half left parenthesis sec invisible function application x tan invisible function application x plus ln invisible function application vertical line sec invisible function application x plus tan invisible function application x vertical line right parenthesis plus C end cell end table end style


تكرار التكامل بالأجزاء باستعمال طريقة الجدول

أتحقق من فهمي صفحة (67):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral x to the power of 4 cos invisible function application 4 x d x end style (a)

نفرض أن: begin mathsize 20px style f left parenthesis x right parenthesis equals x to the power of 4 comma g left parenthesis x right parenthesis equals cos invisible function application 4 x end style، استخدم طريقة الجدول للتكامل بالأجزاء:

حل a

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral x to the power of 4 cos invisible function application 4 x d x equals end cell row blank cell 1 fourth x to the power of 4 sin invisible function application 4 x plus 1 fourth x cubed cos invisible function application 4 x minus 3 over 16 x squared sin invisible function application 4 x minus 3 over 32 x cos invisible function application 4 x plus 3 over 128 sin invisible function application 4 x plus C end cell end table end style

begin mathsize 20px style integral x to the power of 5 e to the power of x d x end style (b)

نفرض أن: begin mathsize 20px style f left parenthesis x right parenthesis equals x to the power of 5 comma g left parenthesis x right parenthesis equals e to the power of x end style، استخدم طريقة الجدول للتكامل بالأجزاء:

حل b

begin mathsize 20px style integral x to the power of 5 e to the power of x d x equals e to the power of x left parenthesis x to the power of 5 minus 5 x to the power of 4 plus 20 x cubed minus 60 x squared plus 120 x minus 120 right parenthesis plus C end style

أتحقق من فهمي صفحة (68):

التكلفة الحدية: يمثل الاقتران: begin mathsize 20px style C to the power of straight prime left parenthesis x right parenthesis equals left parenthesis 0.1 x plus 1 right parenthesis e to the power of 0.03 x end exponent end style التكلفة الحدية لكل قطعة (بالدينار) تنتج في إحدى الشركات، حيث begin mathsize 20px style x end style عدد القطع المنتجة، وbegin mathsize 20px style C left parenthesis x right parenthesis end style تكلفة إنتاج begin mathsize 20px style x end style قطعة بالدينار. أجد اقتران التكلفة begin mathsize 20px style C left parenthesis x right parenthesis end style، علماً بأن begin mathsize 20px style C left parenthesis 10 right parenthesis equals 200 end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell C left parenthesis x right parenthesis equals integral left parenthesis 0.1 x plus 1 right parenthesis e to the power of 0.03 x end exponent d x end cell row blank cell table attributes columnspacing 1em end attributes row cell u equals 0.1 x plus 1 space of 1em d v equals e to the power of 0.03 x end exponent d x end cell row cell d u equals 0.1 d x space of 1em v equals fraction numerator 1 over denominator 0.03 end fraction e to the power of 0.03 x end exponent end cell row cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis 0.1 x plus 1 right parenthesis e to the power of 0.03 x end exponent d x equals left parenthesis 0.1 x plus 1 right parenthesis left parenthesis fraction numerator 1 over denominator 0.03 end fraction e to the power of 0.03 x end exponent right parenthesis minus integral fraction numerator 0.1 over denominator 0.03 end fraction e to the power of 0.03 x end exponent d x end cell row cell space of 1em equals 10 over 3 left parenthesis x plus 10 right parenthesis e to the power of 0.03 x end exponent minus 1000 over 9 e to the power of 0.03 x end exponent plus C end cell end table end cell row cell C left parenthesis 10 right parenthesis equals 200 over 3 e to the power of 0.3 end exponent minus 1000 over 9 e to the power of 0.3 end exponent plus C equals 200 not stretchy rightwards double arrow C almost equal to 260 end cell row cell not stretchy rightwards double arrow C left parenthesis x right parenthesis equals 10 over 3 e to the power of 0.03 x end exponent left parenthesis x minus 70 over 3 right parenthesis plus 260 end cell end table end cell end table end style


التكامل بالأجزاء لتكاملات محدودة

أتحقق من فهمي صفحة (70):

أجد كلاً من التكاملين الآتيين:

begin mathsize 20px style integral subscript 1 superscript e fraction numerator ln invisible function application x over denominator x squared end fraction d x end style (a)

begin mathsize 20px style table attributes columnalign left center columnspacing 1em end attributes row cell u equals ln invisible function application x end cell cell d v equals x to the power of negative 2 end exponent d x end cell row cell d u equals 1 over x d x end cell cell v equals negative 1 over x end cell row cell integral subscript 1 superscript e fraction numerator ln invisible function application x over denominator x squared end fraction d x end cell cell equals negative fraction numerator ln invisible function application x over denominator x end fraction vertical line subscript 1 superscript e plus integral subscript 1 superscript e x to the power of negative 2 end exponent d x end cell row blank cell equals negative fraction numerator ln invisible function application x over denominator x end fraction vertical line subscript 1 superscript e plus left parenthesis negative 1 over x right parenthesis vertical line subscript 1 superscript e end cell row blank cell equals negative 1 over e minus 1 over e plus 1 equals 1 minus 2 over e end cell end table end style

begin mathsize 20px style integral subscript 0 superscript 1 x e to the power of negative 2 x end exponent d x end style (b)

begin mathsize 20px style table attributes columnalign left center columnspacing 1em end attributes row cell u equals x end cell cell d v equals e to the power of negative 2 x end exponent d x end cell row cell d u equals d x end cell cell v equals negative 1 half e to the power of negative 2 x end exponent end cell row cell integral subscript 0 superscript 1 x e to the power of negative 2 x end exponent d x end cell cell equals negative 1 half x e to the power of negative 2 x end exponent vertical line subscript 0 superscript 1 plus integral subscript 0 superscript 1 1 half e to the power of negative 2 x end exponent d x end cell row blank cell equals negative 1 half x e to the power of negative 2 x end exponent vertical line subscript 0 superscript 1 plus negative 1 fourth e to the power of negative 2 x end exponent vertical line subscript 0 superscript 1 end cell row blank cell equals negative e to the power of negative 2 end exponent over 2 minus e to the power of negative 2 end exponent over 4 plus 1 fourth equals 1 fourth minus fraction numerator 3 over denominator 4 e squared end fraction end cell end table end style


التكامل بالأجزاء، والتكامل بالتعويض

أتحقق من فهمي صفحة (71):

أجد قيمة كل من التكاملين الآتيين:

begin mathsize 20px style integral left parenthesis x cubed plus x to the power of 5 right parenthesis sin invisible function application x squared d x end style (a)

begin mathsize 20px style integral left parenthesis x cubed plus x to the power of 5 right parenthesis sin invisible function application x squared d x equals integral x cubed sin invisible function application x squared d x plus integral x to the power of 5 sin invisible function application x squared d x end style

نجد كل تكامل على حدة. فنجد التكامل الأيسر كما يأتي:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals x squared not stretchy rightwards double arrow fraction numerator d y over denominator d x end fraction equals 2 x not stretchy rightwards double arrow d x equals fraction numerator d y over denominator 2 x end fraction end cell row blank cell integral x cubed s i n invisible function application x squared d x equals integral x cubed s i n invisible function application y fraction numerator d y over denominator 2 x end fraction equals 1 half integral x squared s i n invisible function application y d y end cell row blank cell equals 1 half integral y s i n invisible function application y d y end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals y space of 1em d v equals s i n invisible function application y end cell row blank cell d u equals d y space of 1em v equals negative c o s invisible function application y end cell row blank cell integral y s i n invisible function application y d y equals negative y c o s invisible function application y minus integral negative c o s invisible function application y d y end cell row blank cell integral x cubed s i n invisible function application x squared d x equals negative 1 half x squared c o s invisible function application x squared plus 1 half s i n invisible function application x squared plus C end cell end table end style

ونجد التكامل الأيمن كما يأتي:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral x to the power of 5 s i n invisible function application x squared d x equals integral x to the power of 5 s i n invisible function application y fraction numerator d y over denominator 2 x end fraction end cell cell equals 1 half integral x to the power of 4 s i n invisible function application y d y end cell row blank cell equals 1 half integral y squared s i n invisible function application y d y end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals y squared space of 1em d v equals s i n invisible function application y end cell row blank cell d u equals 2 y d y space of 1em v equals negative c o s invisible function application y end cell row blank cell integral y squared s i n invisible function application y d y equals negative y squared c o s invisible function application y minus integral negative 2 y c o s invisible function application y d y end cell row blank cell equals negative y squared c o s invisible function application y plus 2 y s i n invisible function application y minus 2 integral s i n invisible function application y d y end cell row blank cell equals negative y squared c o s invisible function application y plus 2 y s i n invisible function application y plus 2 c o s invisible function application y end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral x to the power of 5 s i n invisible function application x squared d x equals fraction numerator negative 1 over denominator 2 end fraction x to the power of 4 c o s invisible function application x squared plus x squared s i n invisible function application x squared plus c o s invisible function application x squared plus C end cell row blank cell integral left parenthesis x cubed plus x to the power of 5 right parenthesis s i n invisible function application x squared d x equals negative 1 half x squared c o s invisible function application x squared plus 1 half s i n invisible function application x squared minus 1 half x to the power of 4 c o s invisible function application x squared end cell row blank cell plus x squared s i n invisible function application x squared plus c o s invisible function application x squared plus C end cell end table end style

begin mathsize 20px style integral x to the power of 5 e to the power of x squared end exponent d x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals x squared not stretchy rightwards double arrow fraction numerator d y over denominator d x end fraction equals 2 x not stretchy rightwards double arrow d x equals fraction numerator d y over denominator 2 x end fraction end cell row blank cell integral x to the power of 5 e to the power of x squared end exponent d x equals integral x to the power of 5 e to the power of y fraction numerator d y over denominator 2 x end fraction equals integral 1 half x to the power of 4 e to the power of y d y equals 1 half integral y squared e to the power of y d y end cell row blank cell u equals y squared space of 1em d v equals e to the power of y d y end cell row blank cell d u equals 2 y d y space of 1em v equals e to the power of y end cell row blank cell integral y squared e to the power of y d y equals y squared e to the power of y minus integral 2 y e to the power of y d y end cell row blank cell equals y squared e to the power of y minus 2 y e to the power of y plus integral 2 e to the power of y d y end cell row blank cell equals y squared e to the power of y minus 2 y e to the power of y plus 2 e to the power of y equals left parenthesis y squared minus 2 y plus 2 right parenthesis e to the power of y end cell row blank cell integral x to the power of 5 e to the power of x squared end exponent d x equals left parenthesis 1 half x to the power of 4 minus x squared plus 1 right parenthesis e to the power of x squared end exponent plus C end cell end table end style

إعداد : شبكة منهاجي التعليمية

12 / 02 / 2023

النقاشات