حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

التكامل بالأجزاء

(37) تبرير: أثبت أن: begin mathsize 20px style integral subscript 1 divided by 2 end subscript superscript 3 x squared ln invisible function application 2 x d x equals 9 ln invisible function application 6 minus 215 over 72 end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals ln invisible function application 2 x space of 1em d v equals x squared d x end cell row blank cell d u equals 1 over x d x space of 1em v equals 1 third x cubed end cell row blank cell integral subscript 1 half end subscript superscript 3 x squared ln invisible function application 2 x d x equals 1 third x cubed ln invisible function application 2 x vertical line subscript 1 half end subscript superscript 3 minus integral subscript 1 half end subscript superscript 3 1 third x squared d x end cell row blank cell equals 1 third x cubed ln invisible function application 2 x vertical line subscript 1 half end subscript superscript 3 minus 1 over 9 x cubed vertical line subscript 1 half end subscript superscript 3 end cell row blank cell equals 9 ln invisible function application 6 minus 3 plus 1 over 72 equals 9 ln invisible function application 6 minus 215 over 72 end cell end table end style

(38) تبرير: أثبت أن: begin mathsize 20px style integral subscript 0 superscript pi divided by 4 end superscript x sin invisible function application 5 x sin invisible function application 3 x d x equals fraction numerator pi minus 2 over denominator 16 end fraction end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals x space of 1em d v equals sin invisible function application 5 x sin invisible function application 3 x d x equals 1 half left parenthesis cos invisible function application 2 x minus cos invisible function application 8 x right parenthesis d x end cell row blank cell d u equals d x space of 1em v equals 1 fourth sin invisible function application 2 x minus 1 over 16 sin invisible function application 8 x end cell row blank cell integral subscript 0 superscript pi over 4 end superscript x sin invisible function application 5 x sin invisible function application 3 x d x end cell row blank cell equals x left parenthesis 1 fourth sin invisible function application 2 x minus 1 over 16 sin invisible function application 8 x right parenthesis vertical line subscript 0 superscript pi over 4 end superscript minus integral subscript 0 superscript pi over 4 end superscript left parenthesis 1 fourth sin invisible function application 2 x minus 1 over 16 sin invisible function application 8 x right parenthesis d x end cell row blank cell equals x left parenthesis 1 fourth sin invisible function application 2 x minus 1 over 16 sin invisible function application 8 x right parenthesis vertical line subscript 0 superscript pi over 4 end superscript minus left parenthesis negative 1 over 8 cos invisible function application 2 x plus 1 over 128 cos invisible function application 8 x right parenthesis vertical line subscript 0 superscript pi over 4 end superscript end cell row blank cell equals pi over 4 left parenthesis 1 fourth right parenthesis plus 0 minus 1 over 128 minus 1 over 8 plus 1 over 128 equals fraction numerator pi minus 2 over denominator 16 end fraction end cell end table end style

(39) تبرير: إذا كان: begin mathsize 20px style integral subscript 0 superscript a x e to the power of x divided by 2 end exponent d x equals 6 end style، فأثبت أن begin mathsize 20px style a end style يحقق المعادلة: begin mathsize 20px style x equals 2 plus e to the power of negative x divided by 2 end exponent end style.

Error converting from MathML to accessible text.

بقسمة طرفي المعادلة على begin mathsize 20px style 2 e to the power of 1 half a end exponent end style نحصل على:

begin mathsize 20px style a equals 2 plus e to the power of negative 1 half a end exponent end style

لذا فإن begin mathsize 20px style a end style يحقق المعادلة begin mathsize 20px style x equals 2 plus e to the power of negative x over 2 end exponent end style

(40) تبرير: أجد: begin mathsize 20px style integral left parenthesis ln invisible function application x right parenthesis squared d x end style بطريقتين مختلفتين، مبرراً إجابتي.

الطريقة الأولى بالتعويض:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals ln invisible function application x not stretchy rightwards double arrow fraction numerator d u over denominator d x end fraction equals 1 over x not stretchy rightwards double arrow d x equals x d u comma x equals e to the power of u end cell row blank cell integral left parenthesis ln invisible function application x right parenthesis squared d x equals integral u squared x d u equals integral u squared e to the power of u d u end cell end table end style

بالأجزاء مرتين، نستخدم الجدول:

حل السؤال 40

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral u squared e to the power of u d u equals e to the power of u left parenthesis u squared minus 2 u plus 2 right parenthesis plus C end cell row blank cell integral left parenthesis ln invisible function application x right parenthesis squared d x equals e to the power of ln invisible function application x end exponent left parenthesis left parenthesis ln invisible function application x right parenthesis squared minus 2 ln invisible function application x plus 2 right parenthesis plus C end cell row blank cell equals x left parenthesis left parenthesis ln invisible function application x right parenthesis squared minus 2 ln invisible function application x plus 2 right parenthesis plus C end cell end table end style

الطريقة الثانية: بالأجزاء مباشرة: 

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals left parenthesis l n invisible function application x right parenthesis squared space of 1em d v equals d x end cell row blank cell d u equals fraction numerator 2 l n invisible function application x over denominator x end fraction d x space of 1em v equals x end cell row blank cell integral left parenthesis l n invisible function application x right parenthesis squared d x equals x left parenthesis l n invisible function application x right parenthesis squared minus integral 2 l n invisible function application x d x end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals 2 l n invisible function application x space of 1em d v equals d x end cell row blank cell d u equals 2 over x d x space of 1em v equals x end cell row blank cell integral left parenthesis l n invisible function application x right parenthesis squared d x equals x left parenthesis l n invisible function application x right parenthesis squared minus 2 x l n invisible function application x plus integral 2 d x end cell row blank cell equals x left parenthesis l n invisible function application x right parenthesis squared minus 2 x l n invisible function application x plus 2 x plus C end cell end table end style

منحنى الاقترانتبرير: إذا كان الشكل المجاور يمثل منحنى الاقتران: begin mathsize 20px style bold italic y bold equals bold italic x bold italic e to the power of bold 2 bold x end exponent end style حيث: begin mathsize 20px style bold minus bold 1 over bold 2 bold less or equal than bold italic x bold less or equal than bold 1 over bold 2 end style، فأجيب عن السؤالين الآتيين تباعاً:

(41) أجد مساحة كل من المنطقة begin mathsize 20px style R subscript 1 end style، والمنطقة begin mathsize 20px style R subscript 2 end style.

begin mathsize 20px style A subscript 1 equals negative integral subscript negative 1 half end subscript superscript 0 x e to the power of 2 x end exponent d x comma A subscript 2 equals integral subscript 0 superscript 1 half end superscript x e to the power of 2 x end exponent d x end style

نجد التكامل غير المحدود begin mathsize 20px style integral x e to the power of 2 x end exponent d x end style بالأجزاء:

begin mathsize 20px style table attributes columnalign right left right left columnspacing 1em end attributes row u cell equals x end cell cell d v end cell cell equals e to the power of 2 x end exponent d x end cell row cell d u end cell cell equals d x end cell v cell equals 1 half e to the power of 2 x end exponent end cell end table
table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral x e to the power of 2 x end exponent d x equals 1 half x e to the power of 2 x end exponent minus integral 1 half e to the power of 2 x end exponent d x end cell row blank cell equals 1 half x e to the power of 2 x end exponent minus 1 fourth e to the power of 2 x end exponent plus C end cell row blank cell equals 1 fourth e to the power of 2 x end exponent left parenthesis 2 x minus 1 right parenthesis plus C end cell row blank cell not stretchy rightwards double arrow A left parenthesis R subscript 1 right parenthesis equals negative 1 fourth e to the power of 2 x end exponent left parenthesis 2 x minus 1 right parenthesis vertical line subscript 1 half end subscript superscript 0 equals 1 fourth minus fraction numerator 1 over denominator 2 e end fraction equals fraction numerator e minus 2 over denominator 4 e end fraction end cell row blank cell A left parenthesis R subscript 2 right parenthesis equals 1 fourth e to the power of 2 x end exponent left parenthesis 2 x minus 1 right parenthesis vertical line subscript 0 superscript 1 half end superscript equals 0 plus 1 fourth equals 1 fourth end cell end table end cell end table end style

(42) أثبت أن مساحة المنطقة begin mathsize 20px style R subscript 1 end style إلى مساحة المنطقة begin mathsize 20px style R subscript 2 end style تساوي begin mathsize 20px style left parenthesis e minus 2 right parenthesis colon e end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator A left parenthesis R subscript 1 right parenthesis over denominator A left parenthesis R subscript 2 right parenthesis end fraction equals fraction numerator fraction numerator e minus 2 over denominator 4 e end fraction over denominator 1 fourth end fraction equals fraction numerator e minus 2 over denominator e end fraction end cell row blank cell A left parenthesis R subscript 1 right parenthesis colon A left parenthesis R subscript 12 right parenthesis equals left parenthesis e minus 2 right parenthesis colon e end cell end table end style

تحد: استعمل التكامل بالأجزاء لإثبات كل مما يأتي، حيث: begin mathsize 20px style bold italic n end style عدد صحيح موجب، وbegin mathsize 20px style bold italic a bold not equal to bold 0 end style:

begin mathsize 20px style integral x to the power of n ln invisible function application x d x equals fraction numerator x to the power of n plus 1 end exponent over denominator left parenthesis n plus 1 right parenthesis squared end fraction left parenthesis negative 1 plus left parenthesis n plus 1 right parenthesis ln invisible function application x right parenthesis plus C end style (43)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals ln invisible function application x space of 1em d v equals x to the power of n d x end cell row blank cell d u equals 1 over x d x space of 1em v equals fraction numerator 1 over denominator n plus 1 end fraction x to the power of n plus 1 end exponent end cell row blank cell integral x to the power of n ln invisible function application x d x equals fraction numerator x to the power of n plus 1 end exponent ln invisible function application x over denominator n plus 1 end fraction minus integral fraction numerator 1 over denominator n plus 1 end fraction x to the power of n d x end cell row blank cell equals fraction numerator x to the power of n plus 1 end exponent ln invisible function application x over denominator n plus 1 end fraction minus fraction numerator 1 over denominator left parenthesis n plus 1 right parenthesis squared end fraction x to the power of n plus 1 end exponent plus C end cell row blank cell equals fraction numerator x to the power of n plus 1 end exponent over denominator left parenthesis n plus 1 right parenthesis squared end fraction left parenthesis negative 1 plus left parenthesis n plus 1 right parenthesis ln invisible function application x right parenthesis plus C end cell end table end style

begin mathsize 20px style integral x to the power of n e to the power of a x end exponent d x equals fraction numerator x to the power of n e to the power of a x end exponent over denominator a end fraction minus n over a integral x to the power of n minus 1 end exponent e to the power of a x end exponent d x end style (44)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals x to the power of n space of 1em d v equals e to the power of a x end exponent d x end cell row blank cell d u equals n x to the power of n minus 1 end exponent d x space of 1em v equals 1 over a e to the power of a x end exponent end cell row blank cell integral x to the power of n e to the power of a x end exponent d x equals 1 over a x to the power of n e to the power of a x end exponent minus n over a integral x to the power of n minus 1 end exponent e to the power of a x end exponent d x end cell end table end style

إعداد : شبكة منهاجي التعليمية

12 / 02 / 2023

النقاشات