حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

المساحات والحجوم

تبرير: أجيب عن الأسئلة الثلاثة الآتية تباعاً: 

(22) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: begin mathsize 20px style y equals x to the power of 1 divided by 2 end exponent comma times y equals x squared end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x squared equals x to the power of 1 half end exponent not stretchy rightwards double arrow x to the power of 4 equals x not stretchy rightwards double arrow x to the power of 4 minus x equals 0 not stretchy rightwards double arrow x left parenthesis x cubed minus 1 right parenthesis equals 0 not stretchy rightwards double arrow x equals 0 comma x equals 1 end cell row blank cell A equals integral subscript 0 superscript 1 left parenthesis x to the power of 1 half end exponent minus x squared right parenthesis d x equals left parenthesis 2 over 3 x to the power of 3 over 2 end exponent minus 1 third x cubed right parenthesis vertical line subscript 0 superscript 1 equals 2 over 3 minus 1 third minus 0 equals 1 third end cell end table end style

(23) أجد المساحة المحصورة بين منحتيي الاقترانين: begin mathsize 20px style y equals x to the power of 1 divided by 3 end exponent comma times y equals x cubed end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x cubed equals x to the power of 1 third end exponent not stretchy rightwards double arrow x to the power of 9 equals x not stretchy rightwards double arrow x to the power of 9 minus x equals 0 not stretchy rightwards double arrow x left parenthesis x to the power of 8 minus 1 right parenthesis equals 0 end cell row blank cell not stretchy rightwards double arrow x left parenthesis x to the power of 4 minus 1 right parenthesis left parenthesis x to the power of 4 plus 1 right parenthesis equals 0 not stretchy rightwards double arrow x left parenthesis x squared minus 1 right parenthesis left parenthesis x squared plus 1 right parenthesis left parenthesis x to the power of 4 plus 1 right parenthesis equals 0 end cell row blank cell not stretchy rightwards double arrow x equals 0 comma x equals negative 1 comma x equals 1 end cell row blank cell left parenthesis 1 over 8 right parenthesis to the power of 1 third end exponent equals 1 half comma left parenthesis 1 over 8 right parenthesis cubed equals 1 over 512 not stretchy rightwards double arrow x to the power of 1 third end exponent greater than x cubed comma 0 less than x less than 1 end cell row blank cell left parenthesis fraction numerator negative 1 over denominator 8 end fraction right parenthesis to the power of 1 third end exponent equals fraction numerator negative 1 over denominator 2 end fraction comma left parenthesis fraction numerator negative 1 over denominator 8 end fraction right parenthesis cubed equals fraction numerator negative 1 over denominator 512 end fraction not stretchy rightwards double arrow x cubed greater than x to the power of 1 third end exponent comma negative 1 less than x less than 0 end cell row blank cell A equals integral subscript negative 1 end subscript superscript 0 left parenthesis x cubed minus x to the power of 1 third end exponent right parenthesis d x plus integral subscript 0 superscript 1 left parenthesis x to the power of 1 third end exponent minus x cubed right parenthesis d x end cell row blank cell space of 1em equals left parenthesis 1 fourth x to the power of 4 minus 3 over 4 x to the power of 4 over 3 end exponent right parenthesis vertical line subscript negative 1 end subscript superscript 0 plus left parenthesis 3 over 4 x to the power of 4 over 3 end exponent minus 1 fourth x to the power of 4 right parenthesis vertical line subscript 0 superscript 1 end cell row blank cell space of 1em equals 0 minus left parenthesis 1 fourth minus 3 over 4 right parenthesis plus 3 over 4 minus 1 fourth minus 0 equals 1 end cell end table end style

(24) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين : begin mathsize 20px style y equals x to the power of 1 divided by n end exponent comma y equals x to the power of n end style، حيث begin mathsize 20px style n end style عدد صحيح أكبر من أو يساوي 2، مبرراً إجابتي.

أولاً إذا كان n زوجياً

يتقاطع المنحنيان عند begin mathsize 20px style x equals 0 comma x equals 1 end style

begin mathsize 20px style table attributes columnspacing 1em end attributes row cell A equals integral subscript 0 superscript 1 left parenthesis x to the power of 1 over n end exponent minus x to the power of n right parenthesis d x equals left parenthesis fraction numerator x to the power of 1 over n plus 1 end exponent over denominator 1 over n plus 1 end fraction minus fraction numerator x to the power of n plus 1 end exponent over denominator n plus 1 end fraction right parenthesis vertical line subscript 0 superscript 1 equals fraction numerator 1 over denominator 1 over n plus 1 end fraction minus fraction numerator 1 over denominator n plus 1 end fraction minus 0 end cell row cell equals fraction numerator n over denominator n plus 1 end fraction minus fraction numerator 1 over denominator n plus 1 end fraction equals fraction numerator n minus 1 over denominator n plus 1 end fraction end cell end table end style

ثانياً إذا كان n فردياً

يتقاطع المنحنيان عند begin mathsize 20px style x equals 0 comma x equals 1 comma x equals negative 1 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A equals integral subscript negative 1 end subscript superscript 0 left parenthesis x to the power of n minus x to the power of 1 over n end exponent right parenthesis d x plus integral subscript 0 superscript 1 left parenthesis x to the power of 1 over n end exponent minus x to the power of n right parenthesis d x end cell row blank cell equals left parenthesis fraction numerator x to the power of n plus 1 end exponent over denominator n plus 1 end fraction minus fraction numerator x to the power of 1 over n 1 end exponent over denominator 1 over n plus 1 end fraction right parenthesis vertical line subscript negative 1 end subscript superscript 0 plus left parenthesis fraction numerator x to the power of 1 over n plus 1 end exponent over denominator 1 over n plus 1 end fraction minus fraction numerator x to the power of n plus 1 end exponent over denominator n plus 1 end fraction right parenthesis vertical line subscript 0 superscript 1 end cell row blank cell equals 0 minus left parenthesis fraction numerator 1 over denominator n plus 1 end fraction minus fraction numerator 1 over denominator 1 over n plus 1 end fraction right parenthesis plus fraction numerator 1 over denominator 1 over n plus 1 end fraction minus fraction numerator 1 over denominator n plus 1 end fraction minus 0 equals fraction numerator negative 1 plus n over denominator n plus 1 end fraction plus fraction numerator n minus 1 over denominator n plus 1 end fraction end cell row blank cell equals fraction numerator 2 left parenthesis n minus 1 right parenthesis over denominator n plus 1 end fraction end cell end table end style

الشكلتبرير: يبين الشكل المجاور منحنى الاقتران: begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis bold equals square root of bold 2 bold x bold minus bold 2 end root end style، حيث: begin mathsize 20px style bold italic x bold greater or equal than bold 1 end style. إذا كانت النقطة begin mathsize 20px style bold italic P bold left parenthesis bold 9 bold comma bold 4 bold right parenthesis end style تقع على منحنى الاقتران begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis end style، حيث Error converting from MathML to accessible text. يوازي المحور begin mathsize 20px style bold italic y end style، وError converting from MathML to accessible text. يوازي المحور begin mathsize 20px style bold italic x end style، فأجد كلاً مما يأتي:

(25) مساحة المنطقة المحصورة بين منحنى الاقتران begin mathsize 20px style f left parenthesis x right parenthesis end style، والمستقيم begin mathsize 20px style y equals 4 end style والمحورين الإحداثيين.

begin mathsize 20px style square root of 2 x minus 2 end root equals 0 not stretchy rightwards double arrow x equals 1 end style

حل 25

نقسم المنطقة المطلوب حساب مساحتها إلى قسمين برسم المستقيم x=1، ونجد المساحة كما يأتي:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A equals integral subscript 0 superscript 1 4 d x plus integral subscript 1 superscript 9 left parenthesis 4 minus square root of 2 x minus 2 end root right parenthesis d x end cell row blank cell equals left parenthesis 4 x right parenthesis vertical line subscript 0 superscript 1 plus left parenthesis 4 x minus 1 third left parenthesis 2 x minus 2 right parenthesis to the power of 3 over 2 end exponent right parenthesis vertical line subscript 1 superscript 9 end cell row blank cell equals 4 minus 0 plus 36 minus 1 third left parenthesis 16 right parenthesis to the power of 3 over 2 end exponent minus left parenthesis 4 minus 0 right parenthesis equals 44 over 3 end cell end table end style

(26) مساحة المنطقة المحصورة بين منحنى الاقتران begin mathsize 20px style f left parenthesis x right parenthesis end style، والمستقيم begin mathsize 20px style x equals 9 end style، والمحور begin mathsize 20px style x end style.

begin mathsize 20px style A equals integral subscript 1 superscript 9 square root of 2 x minus 2 end root d x equals 1 third left parenthesis 2 x minus 2 right parenthesis to the power of 3 over 2 end exponent vertical line subscript 1 superscript 9 equals 1 third left parenthesis left parenthesis 16 right parenthesis to the power of 3 over 2 end exponent minus 0 right parenthesis equals 64 over 3 end style

الشكل(27) تبرير: بين الشكل المجاور المنطقة المحصورة بين المحورين الإحداثيين في الربع الأول، ومنحنى الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals 2 square root of x minus 2 end root end style، والمستقيمين: begin mathsize 20px style x equals 6 comma y equals 5 end style. أجد حجم المجسم الناتج من دوران المنطقة حول المحور begin mathsize 20px style b b b end style، مبرراً إجابتي.

begin mathsize 20px style 2 square root of x minus 2 end root equals 0 not stretchy rightwards double arrow x equals 2 end style

نقسم المنطقة إلى قسمين برسم المستقيم x=2، ونجد الحجم كما يأتي:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell V equals pi integral subscript 0 superscript 2 5 squared d x plus pi integral subscript 2 superscript 6 left parenthesis 5 squared minus left parenthesis 2 square root of x minus 2 end root right parenthesis squared right parenthesis d x end cell row blank cell equals pi integral subscript 0 superscript 2 25 d x plus pi integral subscript 2 superscript 6 left parenthesis 25 minus left parenthesis 4 x minus 8 right parenthesis d x end cell row blank cell equals 50 pi plus pi integral subscript 2 superscript 6 left parenthesis 33 minus 4 x right parenthesis d x equals 50 pi plus pi left parenthesis 33 x minus 2 x squared right parenthesis vertical line subscript 2 superscript 6 end cell row blank cell equals 50 pi plus pi left parenthesis 33 left parenthesis 6 right parenthesis minus 72 minus 66 plus 8 right parenthesis ∣ end cell row blank cell equals 118 pi end cell end table end sty

الشكلتبرير: يبين الشكل المجاور منحنى كل من الاقتران: begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis bold equals bold italic x to the power of bold 3 bold minus bold 5 bold italic x to the power of bold 2 bold plus bold 3 bold italic x bold plus bold 10 end style، والمستقيم: begin mathsize 20px style bold italic y bold equals bold 3 bold italic x bold plus bold 10 end style. إذا مر المستقيم ومنحنى الاقتران بالنقطة begin mathsize 20px style bold italic A end style الواقعة على المحور begin mathsize 20px style bold italic y end style، وكان للاقتران begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis end style قيمة عظمى محلية عند النقطة begin mathsize 20px style bold italic B end style، وقيمة صغرى محلية عند النقطة begin mathsize 20px style bold italic C end style، وقطع الخط الموازي للمحور begin mathsize 20px style bold italic y end style والمار بالنقطة begin mathsize 20px style bold italic C end style المستقيم: begin mathsize 20px style bold italic y bold equals bold 3 bold italic x bold plus bold 10 end style في النقطة begin mathsize 20px style bold italic D end style؛ فأجيب عن الأسئلة الثلاثة الآتية تباعاً: 

(28) أجد إحداثيات كل من النقطة begin mathsize 20px style B end style، والنقطة begin mathsize 20px style C end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals x cubed minus 5 x squared plus 3 x plus 10 end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals 3 x squared minus 10 x plus 3 equals 0 not stretchy rightwards double arrow left parenthesis 3 x minus 1 right parenthesis left parenthesis x minus 3 right parenthesis equals 0 not stretchy rightwards double arrow x equals 1 third comma x equals 3 end cell end table end style

نقطة القيمة العظمى هي:

begin mathsize 20px style B left parenthesis 1 third comma f left parenthesis 1 third right parenthesis right parenthesis equals left parenthesis 1 third comma 283 over 27 right parenthesis end style

نقطة القيمة الصغرى هي:

begin mathsize 20px style C left parenthesis 3 comma f left parenthesis 3 right parenthesis right parenthesis equals left parenthesis 3 comma 1 right parenthesis end style

(29) أثبت أن Error converting from MathML to accessible text. مماس لمنحنى الاقتران begin mathsize 20px style f left parenthesis x right parenthesis end style عند النقطة begin mathsize 20px style A end style، مبرراً إجابتي.

النقطة A تقع على محور y إذن أحداثياها هما:

begin mathsize 20px style A left parenthesis 0 comma f left parenthesis 0 right parenthesis right parenthesis equals left parenthesis 0 comma 10 right parenthesis end style

ميل المنحنى عند A هو:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction vertical line subscript x equals 0 end subscript equals 0 minus 0 plus 3 equals 3 end style

معادلة مماس المنحنى begin mathsize 20px style f left parenthesis x right parenthesis end style عند النقطة A هي (حيث begin mathsize 20px style f to the power of straight prime left parenthesis 0 right parenthesis equals 3 end style):

begin mathsize 20px style y minus 10 equals 3 left parenthesis x minus 0 right parenthesis not stretchy rightwards double arrow y equals 3 x plus 10 end style

وهذه المعادلة هي معادلة المستقيم begin mathsize 20px style stack A D with left right arrow on top end style نفسها.

إذن، begin mathsize 20px style stack A D with left right arrow on top end style مماس لمنحنى begin mathsize 20px style f left parenthesis x right parenthesis end style عند النقطة A

(30) أجد مساحة المنطقة المظللة، مبرراً إجابتي.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A equals end cell cell integral subscript 0 superscript 3 left parenthesis 3 x plus 10 minus left parenthesis x cubed minus 5 x squared plus 3 x plus 10 right parenthesis right parenthesis d x end cell row blank cell equals integral subscript 0 superscript 3 left parenthesis 5 x squared minus x cubed right parenthesis d x equals left parenthesis 5 over 3 x cubed minus 1 fourth x to the power of 4 right parenthesis vertical line subscript 0 superscript 3 equals 45 minus 81 over 4 minus 0 equals 99 over 4 end cell end table end style

الشكلتبرير: يبين الشكل المجاور منحنيي الاقترانين: begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis bold equals bold italic c bold italic o bold italic s bold invisible function application bold italic x bold comma bold italic h bold left parenthesis bold italic x bold right parenthesis bold equals bold italic s bold italic i bold italic n bold invisible function application bold italic x end style، معتمداً هذا الشكل، أجيب عن الأسئلة الثلاثة الآتية تباعاً:

(31) أجد إحداثيي النقطة begin mathsize 20px style A end style.

begin mathsize 20px style f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis not stretchy rightwards double arrow cos invisible function application x equals sin invisible function application x not stretchy rightwards double arrow tan invisible function application x equals 1 not stretchy rightwards double arrow x equals pi over 4 space text or  end text x equals fraction numerator 5 pi over denominator 4 end fraction end styl

نلاحظ من الرسم المعطى x تقع في الفترة begin mathsize 20px style left parenthesis 0 comma pi over 2 right parenthesis end style

إذن، إحداثيا النقطة A هما: begin mathsize 20px style left parenthesis pi over 4 comma f left parenthesis pi over 4 right parenthesis right parenthesis equals left parenthesis pi over 4 comma fraction numerator 1 over denominator square root of 2 end fraction right parenthesis end style

(32) أجد مساحة كل من المناطق: begin mathsize 20px style R subscript 1 comma R subscript 2 comma R subscript 3 end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A left parenthesis R subscript 1 right parenthesis equals integral subscript 0 superscript pi over 4 end superscript left parenthesis c o s invisible function application x minus s i n invisible function application x right parenthesis d x end cell row blank cell equals left parenthesis s i n invisible function application x plus c o s invisible function application x right parenthesis vertical line subscript 0 superscript pi over 4 end superscript equals fraction numerator 1 over denominator square root of 2 end fraction plus fraction numerator 1 over denominator square root of 2 end fraction minus left parenthesis 0 plus 1 right parenthesis equals square root of 2 minus 1 end cell row blank cell A left parenthesis R subscript 2 right parenthesis equals integral subscript 0 superscript pi over 4 end superscript s i n invisible function application x d x plus integral subscript pi over 4 end subscript superscript pi over 2 end superscript c o s invisible function application x d x end cell row blank cell equals negative c o s invisible function application x vertical line subscript 0 superscript pi over 4 end superscript plus s i n invisible function application x vertical line subscript pi over 4 end subscript superscript pi over 2 end superscript equals negative fraction numerator 1 over denominator square root of 2 end fraction plus 1 plus 1 minus fraction numerator 1 over denominator square root of 2 end fraction equals 2 minus square root of 2 end cell row blank cell A left parenthesis R subscript 3 right parenthesis equals integral subscript pi over 4 end subscript superscript pi over 2 end superscript left parenthesis s i n invisible function application x minus c o s invisible function application x right parenthesis d x plus integral subscript pi over 2 end subscript superscript pi s i n invisible function application x d x end cell row blank cell equals left parenthesis negative c o s invisible function application x minus s i n invisible function application x right parenthesis vertical line subscript pi over 4 end subscript superscript pi over 2 end superscript plus left parenthesis negative c o s invisible function application x right parenthesis vertical line subscript pi over 2 end subscript superscript pi equals square root of 2 end cell row blank cell equals negative 0 minus 1 minus left parenthesis negative fraction numerator 1 over denominator square root of 2 end fraction minus fraction numerator 1 over denominator square root of 2 end fraction right parenthesis plus left parenthesis negative left parenthesis negative 1 right parenthesis plus 0 right parenthesis equals square root of 2 end cell end table end style

(33) أثبت أن مساحة المنطقة begin mathsize 20px style R subscript 1 end style إلى مساحة المنطقة begin mathsize 20px style R subscript 2 end style تساوي: begin mathsize 20px style square root of 2 colon 2 end style.

begin mathsize 20px style fraction numerator A left parenthesis R subscript 1 right parenthesis over denominator A left parenthesis R subscript 2 right parenthesis end fraction equals fraction numerator square root of 2 minus 1 over denominator 2 minus square root of 2 end fraction equals fraction numerator square root of 2 minus 1 over denominator square root of 2 left parenthesis square root of 2 minus 1 right parenthesis end fraction equals fraction numerator 1 over denominator square root of 2 end fraction equals fraction numerator square root of 2 over denominator 2 end fraction end style

إذن: begin mathsize 20px style A left parenthesis R subscript 1 right parenthesis colon A left parenthesis R subscript 2 right parenthesis equals square root of 2 colon 2 end style

الشكلتحد: يبين الشكل المجاور المنطقة begin mathsize 20px style bold italic R end style المحصورة بين منحنى الاقتران: begin mathsize 20px style bold italic y bold equals bold italic x to the power of bold r end style حيث: begin mathsize 20px style bold italic r bold greater than bold 1 end style، والمحور begin mathsize 20px style bold italic x end style، ومماس منحنى الاقتران عند النقطة (1,1):

(34) أثبت أن مماس منحنى الاقتران يقطع المحور begin mathsize 20px style x end style عند النقطة begin mathsize 20px style left parenthesis fraction numerator r minus 1 over denominator r end fraction comma 0 right parenthesis end style.

begin mathsize 20px style y equals x to the power of r comma y to the power of straight prime equals r x to the power of r minus 1 end exponent end style

ميل المماس عند (1,1) هو:

begin mathsize 20px style b b b y to the power of straight prime vertical line subscript x equals 1 end subscript equals r left parenthesis 1 right parenthesis to the power of r minus 1 end exponent equals r end style

معادلة المماس هي:

begin mathsize 20px style y minus 1 equals r left parenthesis x minus 1 right parenthesis not stretchy rightwards double arrow y equals r x plus 1 minus r end style

لإيجاد المقطع x لهذا المماس نضع y=0 في معادلته:

begin mathsize 20px style 0 equals r x plus 1 minus r not stretchy rightwards double arrow x equals fraction numerator r minus 1 over denominator r end fraction end style

إذن، يقطع هذا المماس المحور x في النقطة begin mathsize 20px style left parenthesis fraction numerator r minus 1 over denominator r end fraction comma 0 right parenthesis end style

(35) أستعمل النتيجة من الفرع السابق لإثبات أن مساحة المنطقة begin mathsize 20px style R end style هي begin mathsize 20px style fraction numerator r minus 1 over denominator 2 r left parenthesis r plus 1 right parenthesis end fraction end style وحدة مربعة.

مساحة المنطقة R تساوي المساحة بين المنحنى والمحور x والمستقيمين x=0,x=1 مطروحاً منها مساحة المثلث  الذي رؤوسه begin mathsize 20px style left parenthesis 1 comma 0 right parenthesis comma left parenthesis 1 comma 1 right parenthesis comma left parenthesis fraction numerator r minus 1 over denominator r end fraction comma 0 right parenthesis end style أي أن begin mathsize 20px style A left parenthesis R right parenthesis end style هي: 

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A left parenthesis R right parenthesis end cell cell equals integral subscript 0 superscript 1 x to the power of r d x minus 1 half left parenthesis 1 minus fraction numerator r minus 1 over denominator r end fraction right parenthesis left parenthesis 1 right parenthesis end cell row blank cell equals fraction numerator x to the power of r over denominator r plus 1 end fraction vertical line subscript 0 superscript 1 minus fraction numerator 1 over denominator 2 r end fraction equals fraction numerator 1 over denominator r plus 1 end fraction minus fraction numerator 1 over denominator 2 r end fraction equals fraction numerator 2 r minus r minus 1 over denominator 2 r left parenthesis r plus 1 right parenthesis end fraction equals fraction numerator r minus 1 over denominator 2 r left parenthesis r plus 1 right parenthesis end fraction end cell end table end style

(36) أجد قيمة الثابت begin mathsize 20px style r end style التي تجعل مساحة المنطقة begin mathsize 20px style R end style أكبر ما يمكن.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A left parenthesis r right parenthesis equals fraction numerator r minus 1 over denominator 2 r squared plus 2 r end fraction comma r greater or equal than 1 end cell row blank cell A to the power of straight prime left parenthesis r right parenthesis equals fraction numerator 2 r squared plus 2 r minus left parenthesis r minus 1 right parenthesis left parenthesis 4 r plus 2 right parenthesis over denominator left parenthesis 2 r squared plus 2 r right parenthesis squared end fraction equals fraction numerator negative 2 left parenthesis r squared minus 2 r minus 1 right parenthesis over denominator left parenthesis 2 r squared plus 2 r right parenthesis squared end fraction equals 0 end cell row blank cell not stretchy rightwards double arrow r squared minus 2 r minus 1 equals 0 not stretchy rightwards double arrow r equals fraction numerator 2 plus-or-minus square root of 8 over denominator 2 end fraction equals fraction numerator 2 plus-or-minus 2 square root of 2 over denominator 2 end fraction equals 1 plus-or-minus square root of 2 end cell end table end style

ولأن begin mathsize 20px style r greater or equal than 1 end style تكون قيمة الحرجة begin mathsize 20px style 1 plus square root of 2 end style

إذن، قيمة r التي تجعل المساحة أكبر ما يمكن هي: begin mathsize 20px style r equals 1 plus square root of 2 end style

تحد: إذا كان العمودي على المماس لمنحنى الاقتران: begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis bold equals bold italic x to the power of bold 2 bold minus bold 4 bold italic x bold plus bold 6 end style عند النقطة (1,3) يقطع منحنى الاقتران مرة أخرى عند النقطة begin mathsize 20px style bold italic P end style، فأجد كلاً مما يأتي:

(37) إحداثيات النقطة begin mathsize 20px style P end style.

begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals 2 x minus 4 end style

ميل المماس عند النقطة (1,3) هو:

begin mathsize 20px style f to the power of straight prime left parenthesis 1 right parenthesis equals negative 2 end style

ميل العمودي على المماس عند النقطة (1,3) هو: begin mathsize 20px style 1 half end style

معادلة العمودي:

 begin mathsize 20px style y minus 3 equals 1 half left parenthesis x minus 1 right parenthesis not stretchy rightwards double arrow y equals 1 half x plus 5 over 2 end style

نجد نقاط تقاطع المنحنى والعمودي على المماس:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x squared minus 4 x plus 6 equals 1 half x plus 5 over 2 not stretchy rightwards double arrow 2 x squared minus 9 x plus 7 equals 0 end cell row blank cell not stretchy rightwards double arrow left parenthesis 2 x minus 7 right parenthesis left parenthesis x minus 1 right parenthesis equals 0 not stretchy rightwards double arrow x equals 7 over 2 comma x equals 1 end cell row blank cell not stretchy rightwards double arrow P left parenthesis 7 over 2 comma f left parenthesis 7 over 2 right parenthesis right parenthesis equals left parenthesis 7 over 2 comma 17 over 4 right parenthesis end cell end table end style

(38) مساحة المنطقة المحصورة بين منحنى الاقتران begin mathsize 20px style f left parenthesis x right parenthesis end style والعمودي على المماس، مقرباً إجابتي إلى أقرب 3 منازل عشرية.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell A equals integral subscript 1 superscript 7 over 2 end superscript left parenthesis 1 half x plus 5 over 2 minus left parenthesis x squared minus 4 x plus 6 right parenthesis right parenthesis d x end cell row blank cell equals integral subscript 1 superscript 7 over 2 end superscript left parenthesis 9 over 2 x minus 7 over 2 minus x squared right parenthesis d x equals left parenthesis 9 over 4 x squared minus 7 over 2 x minus 1 third x cubed right parenthesis vertical line subscript 1 superscript 7 over 2 end superscript end cell row blank cell equals left parenthesis 9 over 4 left parenthesis 7 over 2 right parenthesis squared minus 7 over 2 left parenthesis 7 over 2 right parenthesis minus 1 third left parenthesis 7 over 2 right parenthesis cubed right parenthesis minus left parenthesis 9 over 4 minus 7 over 2 minus 1 third right parenthesis end cell row blank cell equals 125 over 48 almost equal to 2.604 end cell end table end style

الشكل(39) تبرير: المنطقة المظللة في الشكل المجاور محصورة بين قطعين مكافئين، يقطع كل منهما المحور begin mathsize 20px style x end style، عندما begin mathsize 20px style x equals negative 1 comma x equals 1 end style. إذا كانت معادلتا القطعين هما: begin mathsize 20px style y equals 2 k left parenthesis x squared minus 1 right parenthesis comma y equals k left parenthesis 1 minus x squared right parenthesis end style، وكانت مـساحة المنطقة المظللة هي 8 وحدات مربعة، فأجد قيمة الثابت begin mathsize 20px style k end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript negative 1 end subscript superscript 1 left parenthesis k left parenthesis 1 minus x squared right parenthesis minus 2 k left parenthesis x squared minus 1 right parenthesis right parenthesis d x equals 8 end cell row blank cell not stretchy rightwards double arrow integral subscript negative 1 end subscript superscript 1 left parenthesis k left parenthesis 1 minus x squared right parenthesis plus 2 k left parenthesis 1 minus x squared right parenthesis right parenthesis d x equals 8 end cell row blank cell not stretchy rightwards double arrow 3 k integral subscript negative 1 end subscript superscript 1 left parenthesis 1 minus x squared right parenthesis d x equals 8 end cell row blank cell 3 k left parenthesis x minus 1 third x cubed right parenthesis vertical line subscript negative 1 end subscript superscript 1 equals 8 end cell row blank cell 3 k left parenthesis left parenthesis 1 minus 1 third right parenthesis minus left parenthesis negative 1 plus 1 third right parenthesis right parenthesis equals 8 end cell row blank cell 3 k left parenthesis 2 minus 2 over 3 right parenthesis equals 8 end cell row blank cell 3 k left parenthesis 4 over 3 right parenthesis equals 8 end cell row blank cell not stretchy rightwards double arrow k equals 2 end cell end table end style

إعداد : شبكة منهاجي التعليمية

13 / 02 / 2023

النقاشات