حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

المعادلات التفاضلية

المعادلات التفاضلية

أتحقق من فهمي صفحة (92):

أحدد إذا كان الاقتران المعطى حلاً للمعادلة التفاضلية: begin mathsize 20px style bold italic y to the power of bold ′′ bold minus bold 4 bold italic y to the power of bold prime bold plus bold 3 bold italic y bold equals bold 0 end s في كل مما يأتي:

begin mathsize 20px style y equals 4 e to the power of x plus 5 e to the power of 3 x end exponent end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y to the power of straight prime equals 4 e to the power of x plus 15 e to the power of 3 x end exponent end cell row blank cell y to the power of ′′ equals 4 e to the power of x plus 45 e to the power of 3 x end exponent end cell row blank cell y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals 4 e to the power of x plus 45 e to the power of 3 x end exponent minus 4 left parenthesis 4 e to the power of x plus 15 e to the power of 3 x end exponent right parenthesis plus 3 left parenthesis 4 e to the power of x plus 5 e to the power of 3 x end exponent right parenthesis equals 0 end cell end table e

إذن begin mathsize 20px style y equals 4 e to the power of x plus 5 e to the power of 3 x end exponent end style حل للمعادلة التفاضلية begin mathsize 20px style y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals 0 end s

begin mathsize 20px style y equals sin invisible function application x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y to the power of straight prime equals cos invisible function application x end cell row blank cell y to the power of ′′ equals negative sin invisible function application x end cell row blank cell y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals negative sin invisible function application x minus 4 cos invisible function application x plus 3 sin invisible function application x equals 2 sin invisible function application x minus 4 cos invisible function application x not equal to 0 end cell end table e

إذن begin mathsize 20px style y equals sin invisible function application x end style ليس حلاً للمعادلة التفاضلية begin mathsize 20px style y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals 0 end s


الحل العام والحل الخاص للمعادلة التفاضلية

أتحقق من فهمي صفحة (94):

أجد الحل العام للمعادلة التفاضلية: begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals 5 sec squared invisible function application x minus 3 over 2 square root of x end style، ثم أجد الحل الخاص لها الذي يحقق النقطة (0,7).

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d x end fraction equals 5 sec squared invisible function application x minus 3 over 2 square root of x not stretchy ⟹ d y equals left parenthesis 5 sec squared invisible function application x minus 3 over 2 square root of x right parenthesis d x end cell row blank cell integral d y equals integral left parenthesis 5 sec squared invisible function application x minus 3 over 2 square root of x right parenthesis d x end cell end table end sty

الحل العام لهذه المعادلة هو:

begin mathsize 20px style y equals 5 tan invisible function application x minus x to the power of 3 over 2 end exponent plus C end style

لإيجاد الحل الخاص نعوض النقطة (0,7) في الحل العام:

begin mathsize 20px style 7 equals 0 minus 0 plus C not stretchy rightwards double arrow C equals 7 end style

الحل الخاص للمعادلة التفاضلية الذي يحقق النقطة (0,7) هو:

begin mathsize 20px style y equals 5 tan invisible function application x minus x to the power of 3 over 2 end exponent plus plus 7 end style


حل المعادلات التفاضلية بفصل المتغيرات

أتحقق من فهمي صفحة (96):

أحل كلاً من المعادلات التفاضلية الآتية:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals fraction numerator 2 x over denominator y to the power of 4 end fraction end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator 2 x over denominator y to the power of 4 end fraction not stretchy rightwards double arrow 2 x d x equals y to the power of 4 d y end cell row blank cell not stretchy rightwards double arrow integral 2 x d x equals integral y to the power of 4 d y not stretchy rightwards double arrow 1 fifth y to the power of 5 equals x squared plus C end cell end table end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals 2 x minus x e to the power of y end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d x end fraction equals 2 x minus x e to the power of y not stretchy rightwards double arrow fraction numerator d y over denominator d x end fraction equals x left parenthesis 2 minus e to the power of y right parenthesis end cell row blank cell not stretchy rightwards double arrow fraction numerator d y over denominator 2 minus e to the power of y end fraction equals x d x end cell row blank cell not stretchy rightwards double arrow integral x d x equals integral fraction numerator 1 over denominator 2 minus e to the power of y end fraction cross times e to the power of negative y end exponent over e to the power of negative y end exponent d y end cell row blank cell not stretchy rightwards double arrow integral x d x equals negative 1 half integral fraction numerator negative 2 e to the power of negative y end exponent over denominator 2 e to the power of negative y end exponent minus 1 end fraction d y end cell row blank cell not stretchy rightwards double arrow x squared over 2 equals negative 1 half ln invisible function application vertical line 2 e to the power of negative y end exponent minus 1 vertical line plus C not stretchy rightwards double arrow x squared equals negative ln invisible function application vertical line 2 e to the power of negative y end exponent minus 1 vertical line plus C end cell end table end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals fraction numerator x sin invisible function application x over denominator y end fraction end style (c)

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

نجد begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style بالأجزاء:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style (d)

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

أتحقق من فهمي صفحة (98):

أجد الحل الخاص الذي يحقق الشرط الأولي المعطى لكل معادلة تفاضلية مما يأتي:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals x y squared e to the power of 2 x end exponent comma y left parenthesis 0 right parenthesis equals 1 end style (a)

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

نجد begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style بالأجزاء:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

الحل العام هو:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

بتعويض (0,1):

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

الحل الخاص هو:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style (b)

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

الحل العام هو: 

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

بتعويض begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

الحل الخاص:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style


المعادلات التفاضلية والحركة في مسار مستقيم

أتحقق من فهمي صفحة (100):

يتحرك جسيم في مسار مستقيم، وتعطى سرعته المتجهة بالمعادلة التفاضلية: begin mathsize 20px style fraction numerator d s over denominator d t end fraction equals s t square root of t plus 1 end root end style، حيث begin mathsize 20px style t end style الزمن بالثواني، وbegin mathsize 20px style s end style موقع الجسيم بالأمتار. أجد موقع الجسيم بعد 3 ثوان من بدء الحركة، علما بأن begin mathsize 20px style s left parenthesis 0 right parenthesis equals 1 end style.

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

الموقع begin mathsize 20px style b b b end style لا يمكن أن يكون 0 لأن begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style غير معرف ولا يمكن أن يكون سالباً لأن begin mathsize 20px style s left parenthesis 0 right parenthesis equals 1 end style واقتران الموقع متصل، ولذا يمكننا أن نحذف رمز القيمة المطلقة وتعتبر begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style بتعريض begin mathsize 20px style s equals 1 end style عندما begin mathsize 20px style t equals 0 end style ينتج:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

نعوض begin mathsize 20px style t equals 3 end style لنجد s الموقع المطلوب:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

أتحقق من فهمي صفحة (102):

غزالغزلان: يمكن نمذجة معدل تغير عدد الغزلان فـي إحدى الغابات بالمعادلة التفاضلية: begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style، حيث begin mathsize 20px style bold italic P end style عدد الغزلان في الغابة بعد begin mathsize 20px style bold italic t end style سنة من بدء دراسة عليها:

(a) أحل المعادلة التفاضلية لإيجاد عدد الغزلان في الغابة بعد سنة من بدء الدراسة، علماً بأن عددها عند بدء الدراسة هو 2500 غزال.

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

بتجزئة الكسر داخل التكامل في الطرف الأيسر:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

حل عام:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

بتعويض P=2500 عند t=0 ينتج:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

(b) بعد كم سنة يصبح عدد الغزلان في الغابة 1800 غزال؟

نعويض P=1800 في المعادلة الأخيرة:

begin mathsize 20px style fraction numerator d x over denominator d t end fraction vertical line subscript x equals 60 end subscript equals negative fraction numerator 2500 pi over denominator 144 end fraction cm divided by min end style

إذن، يصبح عدد الغزلان 1800 غزال بعد 6 سنوات تقريباً من بدء الدراسة.

إعداد : شبكة منهاجي التعليمية

13 / 02 / 2023

النقاشات