حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل

أتدرب وأحل المسائل

قاعدة السلسلة

أتدرب وأحل المسائل

أجد مشتقة كل اقتران ممّا يأتي:

(1) f(x) = (1 + 2x)4

f(x) = 4 (1 + 2x)3 (2)

         = 8 (1 + 2x)3

(2) f(x) = (3 – 2x2)-5

f(x) = -5 (3 – 2x2)-6 (-4x)

         = 20x (3 – 2x2)-6

         = begin mathsize 20px style fraction numerator 20 x over denominator left parenthesis 3 space minus space 2 x squared right parenthesis to the power of 6 end fraction end style

(3) f(x) = begin mathsize 20px style left parenthesis x squared space – space 7 x space plus space 1 right parenthesis to the power of 3 over 2 end exponent end sty

f(x) = begin mathsize 20px style 3 over 2 end style begin mathsize 20px style left parenthesis x squared space – space 7 x space plus space 1 right parenthesis to the power of 1 half end exponent end sty (2x – 7)

     = begin mathsize 20px style 3 over 2 end style (2x – 7) begin mathsize 20px style square root of x squared space minus space 7 x space plus space 1 end root end style

(4) f(x) = begin mathsize 20px style square root of 7 space minus space x end root end style

f(x) = begin mathsize 20px style fraction numerator negative 1 over denominator 2 square root of 7 space minus space x end root end fraction end style

(5) f(x) = 4(2 + 8x)4

f(x) =  16(2 + 8x)3 (8)

         = 128(2 + 8x)3

(6) f(x) = begin mathsize 20px style fraction numerator 1 over denominator cube root of 4 x space minus space 8 end root end fraction end style

f(x) = begin mathsize 20px style left parenthesis 4 x space – space 8 right parenthesis to the power of negative 1 third end exponent end sty

f(x) = -begin mathsize 20px style 1 third end style begin mathsize 20px style left parenthesis 4 x space – space 8 right parenthesis to the power of negative 4 over 3 end exponent end sty  (4)

        = -begin mathsize 20px style 4 over 3 end style begin mathsize 20px style left parenthesis 4 x space – space 8 right parenthesis to the power of negative 4 over 3 end exponent end sty

        = begin mathsize 20px style fraction numerator negative 4 over denominator 3 cube root of left parenthesis 4 x space minus space 8 right parenthesis to the power of 4 end root end fraction end style

(7) f(x) = begin mathsize 20px style square root of 5 space plus space 3 x cubed end root end style

f(x) = begin mathsize 20px style fraction numerator 9 x squared over denominator 2 square root of 5 space minus space 3 x cubed end root end fraction end style

(8) f(x) = begin mathsize 20px style square root of x end style + (x – 3)2

f(x) = begin mathsize 20px style fraction numerator 1 over denominator 2 square root of x end fraction end style + 2(x – 3)

(9) f(x) = begin mathsize 20px style cube root of 2 x space minus space x to the power of 5 end root end style + (4 – x)2

f(x) = begin mathsize 20px style left parenthesis 2 x space – space x to the power of 5 right parenthesis to the power of 1 third end exponent end sty + (4 – x)2

f(x) = begin mathsize 20px style 1 third end stylebegin mathsize 20px style left parenthesis 2 x space – space x to the power of 5 right parenthesis to the power of negative 2 over 3 end exponent end sty (2 – 5x4) + 2(4 – x) (-1)

         = begin mathsize 20px style fraction numerator 2 space minus space 5 x to the power of 4 over denominator 3 cube root of left parenthesis 2 x space minus space x to the power of 5 right parenthesis squared end root end fraction end style - 8 + 2x

(10) f(x) = (begin mathsize 20px style square root of x end style + 5)4

f(x) = 4 (begin mathsize 20px style square root of x end style + 5)3 x begin mathsize 20px style fraction numerator 1 over denominator 2 square root of x end fraction end style

         = begin mathsize 20px style fraction numerator 2 left parenthesis square root of x space plus space 5 right parenthesis cubed over denominator square root of x end fraction end style

(11) f(x) = begin mathsize 20px style square root of left parenthesis 2 x space minus space 5 right parenthesis cubed end root end style

f(x) = begin mathsize 20px style fraction numerator 3 left parenthesis 2 x space minus space 5 right parenthesis squared space left parenthesis 2 right parenthesis over denominator 2 space square root of left parenthesis 2 x space minus space 5 right parenthesis cubed end root end fraction end style

         = begin mathsize 20px style fraction numerator 3 left parenthesis 2 x space minus space 5 right parenthesis squared space over denominator square root of left parenthesis 2 x space minus space 5 right parenthesis cubed end root end fraction end style = 3 begin mathsize 20px style square root of 2 x space minus space 5 end root end style

(12) f(x) = (2x3 – 3x2 + 4x + 1)5

f(x) = 5(2x3 – 3x2 + 4x + 1)4 (6x2 – 6x + 4)

 

أجد مشتقة كل اقتران ممّا يأتي عند قيمة x المعطاة:

(13) f(x) = begin mathsize 20px style 1 over left parenthesis 4 x space plus space 1 right parenthesis squared end style , x = begin mathsize 20px style 1 fourth end style

f(x) = (4x + 1)-2

f(x) = -2 (4x + 1)-3 (4)

        = begin mathsize 20px style 8 over left parenthesis 4 x space plus space 1 right parenthesis cubed end style

f(begin mathsize 20px style 1 fourth end style) = -begin mathsize 20px style 8 over left parenthesis 4 space x space begin display style 1 fourth end style space plus space 1 right parenthesis cubed end style = -1

(14) f(x) = begin mathsize 20px style square root of 25 space minus space x squared space end root end style , x = 3

f(x) = begin mathsize 20px style fraction numerator negative x space over denominator square root of 25 space minus space x squared end root end fraction end style

f(3) = begin mathsize 20px style fraction numerator negative 3 space over denominator square root of 25 space minus space left parenthesis 3 right parenthesis squared end root end fraction end style = -begin mathsize 20px style 3 over 4 end style

 

أستعمل قاعدة السلسلة في إيجاد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style لكلّ ممّا يأتي:

(15) begin mathsize 20px style y equals 5 u squared plus 3 u comma space u equals x cubed plus 1 end style

begin mathsize 20px style table attributes columnalign right left columnspacing 0em 2em end attributes row cell fraction numerator d y over denominator d u end fraction end cell cell equals 10 u plus 3 end cell row cell fraction numerator d u over denominator d x end fraction end cell cell equals 3 x squared end cell row cell fraction numerator d y over denominator d x end fraction end cell cell equals fraction numerator d y over denominator d u end fraction cross times fraction numerator d u over denominator d x end fraction end cell row blank cell equals left parenthesis 10 u plus 3 right parenthesis cross times 3 x squared end cell row blank cell equals left parenthesis 10 left parenthesis x cubed plus 1 right parenthesis plus 3 right parenthesis cross times 3 x squared end cell row blank cell equals left parenthesis 10 x cubed plus 13 right parenthesis cross times 3 x squared end cell row blank cell equals 30 x to the power of 5 plus 39 x squared end cell end table end style

(16) begin mathsize 20px style y equals cube root of 2 u plus 5 end root comma space u equals x squared minus x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row y cell equals left parenthesis 2 u plus 5 right parenthesis to the power of 1 third end exponent end cell row cell fraction numerator d y over denominator d u end fraction end cell cell equals 1 third left parenthesis 2 u plus 5 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 2 right parenthesis equals 2 over 3 left parenthesis 2 u plus 5 right parenthesis to the power of negative 2 over 3 end exponent end cell row cell fraction numerator d u over denominator d x end fraction end cell cell equals 2 x minus 1 end cell row cell fraction numerator d y over denominator d x end fraction end cell cell equals fraction numerator d y over denominator d u end fraction cross times fraction numerator d u over denominator d x end fraction end cell row blank cell equals 2 over 3 left parenthesis 2 u plus 5 right parenthesis to the power of negative 2 over 3 end exponent cross times left parenthesis 2 x minus 1 right parenthesis end cell row blank cell equals 2 over 3 left parenthesis 2 left parenthesis x squared minus x right parenthesis plus 5 right parenthesis to the power of negative 2 over 3 end exponent cross times left parenthesis 2 x minus 1 right parenthesis end cell row blank cell equals fraction numerator 4 x minus 2 over denominator 3 cube root of left parenthesis 2 x squared minus 2 x plus 5 right parenthesis squared end root end fraction end cell end table end style

 

أستعمل قاعدة السلسلة في إيجاد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style لكلّ ممّا يأتي عند قيمة x المعطاة:

(17) begin mathsize 20px style y equals 3 u squared minus 5 u plus 2 comma space u equals x squared minus 1 comma space x equals 2 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator d y over denominator d u end fraction end cell cell equals 6 u minus 5 end cell row cell fraction numerator d u over denominator d x end fraction end cell cell equals 2 x end cell row cell fraction numerator d y over denominator d x end fraction end cell cell equals fraction numerator d y over denominator d u end fraction cross times fraction numerator d u over denominator d x end fraction end cell row blank cell equals left parenthesis 6 u minus 5 right parenthesis cross times left parenthesis 2 x right parenthesis end cell row blank cell equals left parenthesis 6 left parenthesis x squared minus 1 right parenthesis minus 5 right parenthesis cross times left parenthesis 2 x right parenthesis end cell row blank blank end table end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction vertical line subscript x equals 2 end subscript equals left parenthesis 6 left parenthesis 4 minus 1 right parenthesis minus 5 right parenthesis cross times left parenthesis 4 right parenthesis equals 52
end style

(18) begin mathsize 20px style y equals left parenthesis 1 plus u squared right parenthesis cubed comma space u equals 2 x minus 1 comma space x equals 1 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator d y over denominator d u end fraction end cell cell equals 3 left parenthesis 1 plus u squared right parenthesis squared left parenthesis 2 u right parenthesis equals 6 u left parenthesis 1 plus u squared right parenthesis squared end cell row cell fraction numerator d u over denominator d x end fraction end cell cell equals 2 end cell row cell fraction numerator d y over denominator d x end fraction end cell cell equals fraction numerator d y over denominator d u end fraction cross times fraction numerator d u over denominator d x end fraction end cell row blank cell equals 6 u left parenthesis 1 plus u squared right parenthesis squared cross times left parenthesis 2 right parenthesis end cell row blank cell equals 12 left parenthesis 2 x minus 1 right parenthesis left parenthesis 1 plus left parenthesis 2 x minus 1 right parenthesis squared right parenthesis squared end cell end table end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction vertical line subscript x equals 1 end subscript equals 12 left parenthesis 2 minus 1 right parenthesis left parenthesis 1 plus left parenthesis 2 minus 1 right parenthesis squared right parenthesis squared equals 48 end style

 

صناعة: يمثل الاقتران: C(x) = 1000 begin mathsize 20px style square root of x squared space minus space 0.1 x end root end style  تكلفة إنتاج x من منتج معين (بآلاف الدنانير):

(19) أجد معدل تغير تكلفة الإنتاج بالنسبة إلى عدد القطع المُنتجة.

Error converting from MathML to accessible text.

(20) أجد معدل تغير تكلفة الإنتاج بالنسبة إلى عدد القطع المُنتجة عندما يكون عدد القطع المنتجة 20 قطعة.

Error converting from MathML to accessible text.

 

علوم: يمثل الاقتران:N(t) = 400 (1 - begin mathsize 20px style 3 over left parenthesis t squared plus 2 right parenthesis squared end style)  عدد الخلايا البكتيرية بعد t يوماً في مجتمع بكتيري:

(21) أجد معدل تغير N بالنسبة إلى t عندما t = 1 .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell N left parenthesis t right parenthesis equals 400 left parenthesis 1 minus 3 left parenthesis t squared plus 2 right parenthesis to the power of negative 2 end exponent right parenthesis end cell row blank cell N to the power of straight prime left parenthesis t right parenthesis equals 400 left parenthesis 6 left parenthesis t squared plus 2 right parenthesis to the power of negative 3 end exponent left parenthesis 2 t right parenthesis right parenthesis equals fraction numerator 4800 t over denominator left parenthesis t squared plus 2 right parenthesis cubed end fraction end cell row blank cell N to the power of straight prime left parenthesis 1 right parenthesis equals fraction numerator 4800 over denominator left parenthesis 1 plus 2 right parenthesis cubed end fraction almost equal to 178 end cell end table end style

(22) أجد معدل تغير N بالنسبة إلى t عندما t = 4 .

begin mathsize 20px style N to the power of straight prime left parenthesis 4 right parenthesis equals fraction numerator 4800 left parenthesis 4 right parenthesis over denominator left parenthesis 16 plus 2 right parenthesis cubed end fraction almost equal to 3 end style

 

إذا كان: begin mathsize 20px style bold italic g bold left parenthesis bold 2 bold right parenthesis bold equals bold minus bold 3 bold comma bold space bold italic g to the power of bold prime bold left parenthesis bold 2 bold right parenthesis bold equals bold 6 bold comma bold space bold italic h bold left parenthesis bold 3 bold right parenthesis bold equals bold 2 bold comma bold space bold italic h to the power of bold prime bold left parenthesis bold 3 bold right parenthesis bold equals bold minus bold 2 end style ، فأجد مشتقة كل اقتران ممّا يأتي عندما x = 3 :

(23) begin mathsize 20px style f left parenthesis x right parenthesis equals g left parenthesis h left parenthesis x right parenthesis right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals g to the power of straight prime left parenthesis h left parenthesis x right parenthesis right parenthesis cross times h to the power of straight prime left parenthesis x right parenthesis end cell row cell f to the power of straight prime left parenthesis 3 right parenthesis end cell cell equals g to the power of straight prime left parenthesis h left parenthesis 3 right parenthesis right parenthesis cross times h to the power of straight prime left parenthesis 3 right parenthesis end cell row blank cell equals g to the power of straight prime left parenthesis 2 right parenthesis cross times negative 2 end cell row blank cell equals 6 cross times negative 2 equals negative 12 end cell end table end style

(24) begin mathsize 20px style f left parenthesis x right parenthesis equals left parenthesis h left parenthesis x right parenthesis right parenthesis cubed end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell h to the power of straight prime left parenthesis x right parenthesis end cell cell equals f to the power of straight prime left parenthesis g left parenthesis x right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis x right parenthesis end cell row cell h to the power of straight prime left parenthesis 2 right parenthesis end cell cell equals f to the power of straight prime left parenthesis g left parenthesis 2 right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis 2 right parenthesis end cell row blank cell equals f to the power of straight prime left parenthesis 3 right parenthesis cross times negative 1 end cell end table end style

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات