حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

قاعدة السلسلة

(25) تبرير: إذا كان: begin mathsize 20px style h left parenthesis x right parenthesis equals f left parenthesis g left parenthesis x right parenthesis right parenthesis end style ، حيث: begin mathsize 20px style f left parenthesis u right parenthesis equals u squared minus 1 end style ، وكان begin mathsize 20px style g left parenthesis 2 right parenthesis equals 3 comma space g to the power of straight prime left parenthesis 2 right parenthesis equals negative 1 end style ، فأجد begin mathsize 20px style h to the power of straight prime left parenthesis 2 right parenthesis end style ، مبرراً إجابتي.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell h to the power of straight prime left parenthesis x right parenthesis end cell cell equals f to the power of straight prime left parenthesis g left parenthesis x right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis x right parenthesis end cell row cell h to the power of straight prime left parenthesis 2 right parenthesis end cell cell equals f to the power of straight prime left parenthesis g left parenthesis 2 right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis 2 right parenthesis end cell row blank cell equals f to the power of straight prime left parenthesis 3 right parenthesis cross times negative 1 end cell end table end style

نجد مشتقة  f  ونحسب Error converting from MathML to accessible text.(3)

begin mathsize 20px style f left parenthesis u right parenthesis equals u squared minus 1 space of 1em not stretchy rightwards arrow space of 1em f to the power of straight prime left parenthesis u right parenthesis equals 2 u space of 1em not stretchy rightwards arrow f to the power of straight prime left parenthesis 3 right parenthesis equals 2 cross times 3 equals 6 end style

إذن:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell h to the power of straight prime left parenthesis 2 right parenthesis end cell cell equals f to the power of straight prime left parenthesis 3 right parenthesis cross times negative 1 end cell row blank cell equals 6 cross times negative 1 equals negative 6 end cell end table end style

 

(26) تبرير: أجد مشتقة الاقتران: y = (x2 – 4)5 عندما y = 0 ، مبرراً إجابتي؟

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals left parenthesis x squared minus 4 right parenthesis to the power of 5 end cell row blank cell 0 equals left parenthesis x squared minus 4 right parenthesis to the power of 5 not stretchy rightwards arrow x squared minus 4 equals 0 not stretchy rightwards arrow left parenthesis x minus 2 right parenthesis left parenthesis x plus 2 right parenthesis equals 0 end cell row blank cell fraction numerator d y over denominator d x end fraction equals 5 left parenthesis x squared minus 4 right parenthesis to the power of 4 left parenthesis 2 x right parenthesis equals 10 x left parenthesis x squared minus 4 right parenthesis to the power of 4 end cell row blank cell fraction numerator d y over denominator d x end fraction vertical line subscript x equals 2 end subscript equals 10 left parenthesis 2 right parenthesis left parenthesis 2 squared minus 4 right parenthesis to the power of 4 equals 0 end cell row blank cell fraction numerator d y over denominator d x end fraction vertical line subscript x equals negative 2 end subscript equals 10 left parenthesis negative 2 right parenthesis left parenthesis left parenthesis negative 2 right parenthesis squared minus 4 right parenthesis to the power of 4 equals 0 end cell end table end style

 

(27) أكتشف المختلف: أي الاقترانات الآتية مختلف، مبرراً إجابتي؟

 p(x) هو الاقتران الوحيد الذي يمكن اشتقاقه بدون تطبيق قاعدة السلسة.

 

(28) تحدّ: أجد مشتقة الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals cube root of 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 end root end style

 begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of 1 third end exponent end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals 1 third left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis right parenthesis end cell row blank cell equals fraction numerator 2 plus 4 left parenthesis x squared plus x right parenthesis cubed left parenthesis 2 x plus 1 right parenthesis over denominator 3 cube root of left parenthesis 2 x plus left parenthesis x squared plus x right parenthesis to the power of 4 right parenthesis squared end root end fraction end cell end table end style

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات