حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل - 1

أتدرب وأحل المسائل

الأسئلة (1 - 20)

الاشتقاق

أبحث قابلية اشتقاق كل اقتران ممّا يأتي عند قيمة x المعطاة:

(1) begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line x minus 5 vertical line comma space x equals 5 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis 5 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 5 plus h right parenthesis minus f left parenthesis 5 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator vertical line left parenthesis 5 plus h right parenthesis minus 5 vertical line minus 0 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator vertical line h vertical line over denominator h end fraction end cell row cell f subscript plus superscript straight prime left parenthesis 5 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 to the power of plus of h over h equals 1 end cell row cell f subscript minus superscript straight prime left parenthesis 5 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 to the power of minus of fraction numerator negative h over denominator h end fraction equals negative 1 end cell end table end style

بما أن النهايتين من اليمين واليسار غير متساويتين، فإن f '(5) غير موجودة، أي أنّ  f غير قابل للاشتقاق عند x = 5

(2) begin mathsize 20px style f left parenthesis x right parenthesis equals x to the power of 2 divided by 5 end exponent comma space x equals 0 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis 0 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 0 plus h right parenthesis minus f left parenthesis 0 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator left parenthesis h right parenthesis to the power of 2 over 5 end exponent minus 0 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of h to the power of 2 over 5 end exponent over h equals lim for h not stretchy rightwards arrow 0 of 1 over h to the power of 3 over 5 end exponent end cell row cell f subscript plus superscript straight prime left parenthesis 0 right parenthesis end cell cell equals straight infinity end cell row cell f subscript minus superscript straight prime left parenthesis 0 right parenthesis end cell cell equals negative straight infinity end cell end table end style

f  (0) غير موجودة، إذن  f غير قابل للاشتقاق عند x = 0

(3) begin mathsize 20px style f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell x squared end cell cell comma space x less or equal than 1 end cell row cell x squared minus 2 x end cell cell comma space x greater than 1 end cell end table space of 1em comma space x equals 1 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f subscript plus superscript straight prime left parenthesis 1 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 1 plus h right parenthesis minus f left parenthesis 1 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator left parenthesis 1 plus h right parenthesis squared minus 2 left parenthesis 1 plus h right parenthesis minus 1 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator 1 plus 2 h plus h squared minus 2 minus 2 h minus 1 over denominator h end fraction equals lim for h not stretchy rightwards arrow 0 of fraction numerator h squared minus 2 over denominator h end fraction equals negative straight infinity end cell end table end style

begin mathsize 20px style f subscript plus superscript straight prime left parenthesis 1 right parenthesis end style غير موجودة، إذن  f غير قابل للاشتقاق عند x = 1

(4) begin mathsize 20px style f left parenthesis x right parenthesis equals 3 over x comma space x equals 4 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis 4 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 4 plus h right parenthesis minus f left parenthesis 4 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator fraction numerator 3 plus h over denominator 4 plus 3 over 4 end fraction over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator 12 minus 12 minus 3 h over denominator 4 h left parenthesis 4 plus h right parenthesis end fraction equals lim for h not stretchy rightwards arrow 0 of fraction numerator negative 3 over denominator 4 left parenthesis 4 plus h right parenthesis end fraction equals fraction numerator negative 3 over denominator 16 end fraction end cell end table end style

f  (4) غير موجودة، إذن  f قابل للاشتقاق عند x = 4

(5) begin mathsize 20px style f left parenthesis x right parenthesis equals left parenthesis x minus 6 right parenthesis to the power of 2 divided by 3 end exponent comma space x equals 6 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis 6 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 6 plus h right parenthesis minus f left parenthesis 6 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator left parenthesis 6 plus h minus 6 right parenthesis to the power of 2 over 3 end exponent minus 0 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator left parenthesis h right parenthesis to the power of 2 over 3 end exponent over denominator h end fraction equals lim for h not stretchy rightwards arrow 0 of 1 over h to the power of 1 third end exponent end cell row cell f subscript plus superscript straight prime left parenthesis 6 right parenthesis end cell cell equals straight infinity end cell row cell f subscript minus superscript straight prime left parenthesis 6 right parenthesis end cell cell equals negative straight infinity end cell end table end style

f  (6) غير موجودة، إذن  f غير قابل للاشتقاق عند x = 6

(6) begin mathsize 20px style f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell x plus 1 end cell cell comma space x not equal to 4 end cell row 3 cell comma space x equals 4 end cell end table space of 1em comma space x equals 4 end style

 

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis 4 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 4 plus h right parenthesis minus f left parenthesis 4 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator 4 plus h plus 1 minus 3 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator h plus 2 over denominator h end fraction end cell row cell f subscript plus superscript straight prime left parenthesis 4 right parenthesis end cell cell equals straight infinity end cell row cell f subscript minus superscript straight prime left parenthesis 4 right parenthesis end cell cell equals negative straight infinity end cell end table end style

f  (4) غير موجودة، إذن  f غير قابل للاشتقاق عند x = 4

 

أحدد قيم x للنقاط التي لا يكون عندها كلّ اقتران ممّا يأتي قابلاً للاشتقاق، مبرراً إجابتي:

(7) الاقتران f غير قابل للاشتقاق عندما x = x3, x = x4, x = x6 ؛ لأن لمنحناه رأس حاد أو زاوية عند هذه النقاط.

وهو غير قابل للاشتقاق عندما x = x0 ؛ لأنه غير متصل عندها،

وهو غير قابل للاشتقاق عندما x = x12 ؛ نظراً لوجود مماس رأسي عند هذه النقطة.

(8) الاقتران g غير قابل للاشتقاق عندماx = x3 ؛ لأن لمنحناه زاوية عند هذه النقطة.

وهو غير قابل للاشتقاق عندما x = x0 ؛ لأنه غير متصل عندها،

وهو غير قابل للاشتقاق عندما x = x1, x = x2, x = x4 ؛ لأنه غير متصل عندها.

 

أحدد قيمة (قيم) x التي لا يكون عندها كلّ اقتران ممّا يأتي قابلاً للاشتقاق:

(9) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator x minus 8 over denominator x squared minus 4 x minus 5 end fraction end style

f اقتران نسبي منحناه متصل وأملس عند جميع نقاطه باستثناء أصفار مقامه،

 

begin mathsize 20px style x squared minus 4 x minus 5 equals 0 not stretchy rightwards arrow left parenthesis x minus 5 right parenthesis left parenthesis x plus 1 right parenthesis equals 0 not stretchy rightwards arrow x equals 5 space text or  end text x equals negative 1 end styl

 

f غير متصل عند x = 5 , x = -1 إذن غير قابل للاشتقاق عندها.

(10) begin mathsize 20px style f left parenthesis x right parenthesis equals cube root of 3 x minus 6 end root plus 5 end style

 

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals cube root of 3 x minus 6 end root end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals 1 third left parenthesis 3 x minus 6 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 3 right parenthesis equals fraction numerator 1 over denominator left parenthesis 3 x minus 6 right parenthesis to the power of 2 over 3 end exponent end fraction end cell end table end style

  f (x) موجودة عند جميع قيم x الحقيقية عدا أصفار مقامها، إذن f غير قابل للاشتقاق عند x = 2

(11) begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line x squared minus 9 vertical line end style

begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line x squared minus 9 vertical line equals left curly bracket table attributes columnspacing 1em end attributes row cell 9 minus x squared comma negative 3 less than x less than 3 end cell row cell x squared minus 9 comma x less or equal than negative 3 space text or  end text x greater or equal than 3 end cell end table end styl

نبحث قابلية الاشتقاق عند x = 3 و x = -3 :

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f to the power of straight prime left parenthesis 3 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 3 plus h right parenthesis minus f left parenthesis 3 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator vertical line left parenthesis 3 plus h right parenthesis squared minus 9 vertical line minus 0 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator vertical line 6 h plus h squared vertical line over denominator h end fraction end cell row cell f subscript plus superscript straight prime left parenthesis 3 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 to the power of plus of fraction numerator 6 h plus h squared over denominator h end fraction equals lim for h not stretchy rightwards arrow 0 to the power of plus of left parenthesis 6 plus h right parenthesis equals 6 end cell row cell f subscript minus superscript straight prime left parenthesis 3 right parenthesis end cell cell equals lim for h not stretchy rightwards arrow 0 to the power of minus of fraction numerator negative 6 h minus h squared over denominator h end fraction equals lim for h not stretchy rightwards arrow 0 to the power of minus of left parenthesis negative 6 minus h right parenthesis equals negative 6 end cell end table end style

بما أن النهايتين من اليمين واليسار غير متساويتين فإن begin mathsize 20px style f to the power of straight prime left parenthesis 3 right parenthesis end style غير موجودة أي أن f غير قابل للاشتقاق عند x = 3

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f to the power of straight prime left parenthesis negative 3 right parenthesis equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis negative 3 plus h right parenthesis minus f left parenthesis negative 3 right parenthesis over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator vertical line left parenthesis negative 3 plus h right parenthesis squared minus 9 vertical line minus 0 over denominator h end fraction end cell row blank cell equals lim for h not stretchy rightwards arrow 0 of fraction numerator vertical line 6 h minus h squared vertical line over denominator h end fraction end cell row blank cell f subscript plus superscript straight prime left parenthesis negative 3 right parenthesis equals lim for h not stretchy rightwards arrow 0 to the power of plus of fraction numerator 6 h minus h squared over denominator h end fraction equals lim for h not stretchy rightwards arrow 0 to the power of plus of left parenthesis 6 minus h right parenthesis equals 6 end cell row blank cell f subscript minus superscript straight prime left parenthesis negative 3 right parenthesis equals lim for h not stretchy rightwards arrow 0 to the power of minus of fraction numerator negative 6 h plus h squared over denominator h end fraction equals lim for h not stretchy rightwards arrow 0 to the power of minus of left parenthesis negative 6 plus h right parenthesis equals negative 6 end cell end table end style

بما أن النهايتين من اليمين واليسار غير متساويتين فإن begin mathsize 20px style f to the power of straight prime left parenthesis negative 3 right parenthesis end style غير موجودة أي أن f غير قابل للاشتقاق عند x = -3

إذن  f غير قابل للاشتقاق عند x = 3 , x = -3

 

(12) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals x vertical line x vertical line end style ، فأثبت أنّ begin mathsize 20px style f to the power of straight prime left parenthesis 0 right parenthesis end style موجودة.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals x vertical line x vertical line end cell row blank cell f to the power of straight prime left parenthesis 0 right parenthesis equals lim for h not stretchy rightwards arrow 0 of fraction numerator f left parenthesis 0 plus h right parenthesis minus f left parenthesis 0 right parenthesis over denominator h end fraction end cell row blank cell equals lim for bold italic h not stretchy rightwards arrow 0 of fraction numerator bold italic h vertical line bold italic h vertical line minus 0 over denominator bold italic h end fraction end cell row blank cell equals lim for bold italic h not stretchy rightwards arrow bold 0 of vertical line bold italic h vertical line end cell row blank cell vertical line bold italic h vertical line equals left curly bracket table attributes columnalign center columnspacing 1em end attributes row cell negative h comma h less than 0 end cell row cell bold italic h comma bold italic h greater or equal than bold 0 end cell end table end cell row blank cell f subscript plus superscript straight prime left parenthesis 0 right parenthesis equals lim for h not stretchy rightwards arrow 0 of h equals 0 end cell row blank cell f subscript minus superscript straight prime left parenthesis 0 right parenthesis equals lim for bold italic h not stretchy rightwards arrow 0 of left parenthesis negative bold italic h right parenthesis equals 0 end cell row blank blank end table end style

بما أن النهايتين من اليمين واليسار متساويتان، إذن begin mathsize 20px style f to the power of straight prime left parenthesis 0 right parenthesis end style موجودة.

 

أجد مشتقة كل اقتران ممّا يأتي:

(13) begin mathsize 20px style f left parenthesis x right parenthesis equals 2 sin invisible function application space x minus e to the power of x end style

begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals 2 c o s invisible function application space x minus e to the power of x end style

(14) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator ln invisible function application space x over denominator 4 end fraction minus pi space cos invisible function application space x end style

begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals fraction numerator 1 over denominator 4 x end fraction plus pi space s i n invisible function application space x end style

(15) begin mathsize 20px style f left parenthesis x right parenthesis equals ln invisible function application space left parenthesis 1 over x cubed right parenthesis plus x to the power of 4 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals l n invisible function application space left parenthesis 1 over x cubed right parenthesis plus x to the power of 4 end cell row blank cell equals l n invisible function application space 1 minus l n invisible function application space x cubed plus x to the power of 4 end cell row blank cell equals negative 3 l n invisible function application space x plus x to the power of 4 end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals negative 3 over x plus 4 x cubed end cell end table end style

(16) begin mathsize 20px style f left parenthesis x right parenthesis equals e to the power of x plus 1 end exponent plus 1 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals e to the power of x plus 1 end exponent plus 1 equals e cross times e to the power of x plus 1 end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals e cross times e to the power of x equals e to the power of x plus 1 end exponent end cell end table end style

(17) begin mathsize 20px style f left parenthesis x right parenthesis equals e to the power of x plus x to the power of e end style

begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals e to the power of x plus e space x to the power of e minus 1 end exponent end style

(18) begin mathsize 20px style f left parenthesis x right parenthesis equals ln invisible function application space left parenthesis 10 over x to the power of n right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals l n invisible function application space left parenthesis 10 over x to the power of n right parenthesis end cell row blank cell equals l n invisible function application space 10 minus l n invisible function application space x to the power of n equals l n invisible function application space 10 minus n space l n invisible function application space x end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals negative n left parenthesis 1 over x right parenthesis equals negative n over x end cell end table end style

 

إذا كان: begin mathsize 20px style f italic left parenthesis x italic right parenthesis italic equals s i n italic invisible function application italic space x italic plus italic 1 over italic 2 e to the power of x end style ، فأجيب عن السؤالين الآتيين تباعاً:

(19) أجد معادلة المماس لمنحنى الاقتران f عند النقطة (begin mathsize 20px style pi space comma space 1 half e to the power of pi end style).

begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals c o s invisible function application space x plus 1 half e to the power of x end style

ميل المماس عند النقطة (begin mathsize 20px style pi space comma space 1 half e to the power of pi end style) :

begin mathsize 20px style f to the power of straight prime left parenthesis pi right parenthesis equals c o s invisible function application space pi plus 1 half e to the power of pi equals negative 1 plus 1 half e to the power of pi end style

معادلة المماس عند النقطة (begin mathsize 20px style pi space comma space 1 half e to the power of pi end style) :

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y minus 1 half e to the power of pi equals left parenthesis negative 1 plus 1 half e to the power of pi right parenthesis left parenthesis x minus pi right parenthesis end cell row blank cell y equals left parenthesis negative 1 plus 1 half e to the power of pi right parenthesis x plus pi minus pi over 2 e to the power of pi plus 1 half e to the power of pi end cell end table end style

 

(20) أجد معادلة العمودي على المماس لمنحنى الاقتران f عند النقطة (begin mathsize 20px style pi space comma space 1 half e to the power of pi end style).

بما أن ميل المماس عند النقطة (begin mathsize 20px style pi space comma space 1 half e to the power of pi end style) هو begin mathsize 20px style negative 1 plus 1 half e to the power of pi end style ، فإن ميل العمودي على المماس هو:

begin mathsize 20px style fraction numerator negative 1 over denominator negative 1 plus 1 half e to the power of pi end fraction equals fraction numerator negative 2 over denominator negative 2 plus e to the power of pi end fraction equals fraction numerator 2 over denominator 2 minus e to the power of pi end fraction end style

معادلة العمودي على المماس هي:

begin mathsize 20px style y minus 1 half e to the power of pi equals fraction numerator 2 over denominator 2 minus e to the power of pi end fraction left parenthesis x minus pi right parenthesis not stretchy rightwards arrow y equals fraction numerator 2 over denominator 2 minus e to the power of pi end fraction x minus fraction numerator 2 pi over denominator 2 minus e to the power of pi end fraction plus 1 half e to the power of pi end style

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات