حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  إجابات كتاب التمارين

إجابات كتاب التمارين

مشتقتا الضرب والقسمة والمشتقات العليا

أجد مشتقة كل اقتران ممّا يأتي:

(1) f(x) = begin mathsize 20px style fraction numerator sin space x space over denominator x end fraction end style

f (x) = begin mathsize 20px style fraction numerator x space cos space x space minus space sin space x space over denominator x squared end fraction end style

(2) f(x) = -cos x – sin x

f (x) = csc x cot x – cos x

(3) f(x) = begin mathsize 20px style fraction numerator x space plus space c over denominator x space plus space begin display style c over x end style end fraction end style

f (x) = begin mathsize 20px style fraction numerator x squared space plus space c x over denominator x squared space plus space c end fraction end style , x 0

f (x) = begin mathsize 20px style fraction numerator left parenthesis 2 x space plus space c right parenthesis space left parenthesis x squared space plus space c right parenthesis space minus space 2 x space left parenthesis x squared space plus space c x right parenthesis over denominator left parenthesis x squared space plus space c right parenthesis squared end fraction end stylebegin mathsize 20px style fraction numerator 2 c x space minus space c x squared space plus space c squared over denominator left parenthesis x squared space plus space c right parenthesis squared end fraction end style , x 0

(4) f(x) = x cos x

f (x) = -x csc2 x + cot x

(5) f(x) = 4xx2 tan x

f (x) = 4 – x2 sec2 x – 2x tan x

(6) f(x) = begin mathsize 20px style fraction numerator cos space x space over denominator x squared end fraction end style

f (x) = begin mathsize 20px style fraction numerator negative x squared space sin space x space minus space 2 x space cos space x over denominator x to the power of 4 end fraction end style = begin mathsize 20px style fraction numerator negative x space sin space x space minus space 2 space cos space x over denominator x cubed end fraction end style

(7) f(x) = x (1 - begin mathsize 20px style fraction numerator 4 space over denominator x space plus space 3 end fraction end style)

f (x) = x – begin mathsize 20px style fraction numerator 4 x space over denominator x space plus space 3 end fraction end style

f (x) = 1 - begin mathsize 20px style fraction numerator 4 left parenthesis x space plus space 3 right parenthesis space minus space 4 x over denominator left parenthesis x space plus space 3 right parenthesis squared end fraction end style = 1 - begin mathsize 20px style 12 over left parenthesis x space plus space 3 right parenthesis squared end style

(8) f(x) = begin mathsize 20px style fraction numerator 3 left parenthesis 1 space minus space sin space x right parenthesis space over denominator 2 space cos space x end fraction end style

f (x) = begin mathsize 20px style fraction numerator negative 6 space cos squared space x space minus space left parenthesis 3 space minus space 3 space sin space x right parenthesis space left parenthesis negative 2 space sin space x right parenthesis over denominator left parenthesis 2 cos space x right parenthesis squared end fraction end style = begin mathsize 20px style fraction numerator negative 6 space plus space 6 space sin space x over denominator 4 space cos squared space x end fraction end style

(9) f(x) = (x + 1) ex

f (x) = (x + 1) ex + ex = (x + 2) ex

 

أجد معادلة المماس لكل اقتران ممّا يأتي عند النقطة المعطاة:

(10) f(x) = x2 cos x , (begin mathsize 20px style straight pi over 2 end style , 0)

f (x) = -x2 sin x + 2x cos x

ميل المماس:

f (begin mathsize 20px style straight pi over 2 end style) = - begin mathsize 20px style straight pi squared over 4 end style

معادلة المماس:

y - 0 = -begin mathsize 20px style straight pi squared over 4 end style (x - begin mathsize 20px style straight pi over 2 end style) →  y = - begin mathsize 20px style straight pi squared over 4 end style x + begin mathsize 20px style straight pi cubed over 8 end style

(11) f(x) = begin mathsize 20px style fraction numerator 1 space plus space sin space x over denominator cos space x end fraction end style , (π , -1)

f (x) = begin mathsize 20px style fraction numerator left parenthesis cos space x right parenthesis space left parenthesis cos space x right parenthesis space plus space sin space x space left parenthesis 1 space plus space sin space x right parenthesis over denominator cos squared space x end fraction end style = begin mathsize 20px style fraction numerator 1 space plus space sin space x over denominator cos squared space x end fraction end style

ميل المماس:

f (π) = begin mathsize 20px style 1 over 1 end style = 1

معادلة المماس:

y +1 =  1(x - π) →  y = x – π - 1

 

أجد إحداثيي النقطة (النقاط) التي يكون عندها لمنحنى كل اقتران ممّا يأتي مماس أفقي:

(12) f(x) = begin mathsize 20px style fraction numerator 2 x space minus space 1 over denominator x squared end fraction end style 

f (x) = begin mathsize 20px style fraction numerator 2 x squared space minus space 4 x squared space plus space 2 x over denominator x to the power of 4 end fraction end style = begin mathsize 20px style fraction numerator negative 2 x space plus space 2 over denominator x cubed end fraction end style = 0  → x = 1

النقطة المطلوبة هي:

(1, f(1)) = (1, 1)

(13) h(x) = begin mathsize 20px style fraction numerator x squared space over denominator x squared space plus space 1 end fraction end style 

h(x) = begin mathsize 20px style fraction numerator 2 x left parenthesis x squared space plus space 1 right parenthesis space minus space 2 x cubed space over denominator left parenthesis x squared space plus space 1 right parenthesis squared end fraction end style  = begin mathsize 20px style fraction numerator 2 x space space over denominator left parenthesis x squared space plus space 1 right parenthesis squared end fraction end style= 0 →  x = 0

النقطة المطلوبة هي:

(0, h(0)) = (0, 0)

(14) g(x) = begin mathsize 20px style fraction numerator 8 left parenthesis x space minus space 2 right parenthesis space over denominator e to the power of x space end fraction end style 

g(x) = begin mathsize 20px style fraction numerator 8 e to the power of x space minus space 8 e to the power of x left parenthesis x space minus space 2 right parenthesis space over denominator e to the power of 2 x end exponent space end fraction end style = begin mathsize 20px style fraction numerator 8 e to the power of x space left parenthesis 3 space minus space x right parenthesis space over denominator e to the power of 2 x end exponent space end fraction end style = begin mathsize 20px style fraction numerator 8 left parenthesis 3 space minus space x right parenthesis space over denominator e to the power of x space end fraction end style = 0  →  x = 3

النقطة المطلوبة هي:

(3, g(3)) = (3,begin mathsize 20px style 8 over e cubed end style)

 

يبين الشكل المجاور منحنيي الاقترانين: f(x) ، و g(x) . إذا كان: u(x) = f(x)g(x) ، وكان: begin mathsize 20px style fraction numerator f left parenthesis x right parenthesis over denominator g left parenthesis x right parenthesis end fraction end style v(x) = ، فأجد كلاً ممّا يأتي:

(15) u(1)

u(1) = f(1)g(1) + g(1)f(1) = 2 x 1 + 3 x begin mathsize 20px style 1 third end style = 3 

(16) v(4)

v(4) = begin mathsize 20px style fraction numerator g left parenthesis 4 right parenthesis f apostrophe left parenthesis 4 right parenthesis space minus space f left parenthesis 4 right parenthesis g apostrophe left parenthesis 4 right parenthesis over denominator left parenthesis g left parenthesis 4 right parenthesis right parenthesis squared end fraction end style = begin mathsize 20px style fraction numerator 2 space straight x space begin display style 1 third end style minus space 3 space straight x space 1 over denominator left parenthesis 2 right parenthesis squared end fraction end style = - begin mathsize 20px style 27 over 12 end style

(17) إذا كان: f(x) = x sec x ، فأثبت أنّ f (x) = sec x (1 + x tan x) .

f(x) = x sec x tan x + sec x = sec x (1 + x tan x)

(18) إذا كان: f(x) = begin mathsize 20px style fraction numerator ln space x over denominator x end fraction end style ، حيث: x > 0 ، فأجد f(x) ، و f(x) .

f(x) = begin mathsize 20px style fraction numerator space x space straight x space begin display style 1 over x end style minus space ln space x over denominator x squared end fraction end style = begin mathsize 20px style fraction numerator 1 space minus space ln space x over denominator x squared end fraction end style = begin mathsize 20px style 1 over x squared end style - begin mathsize 20px style fraction numerator ln space x over denominator x squared end fraction end style

f(x) = - begin mathsize 20px style 2 over x cubed end style - begin mathsize 20px style fraction numerator space x squared space straight x space begin display style 1 over x end style minus space 2 x space ln space x over denominator x to the power of 4 end fraction end stylebegin mathsize 20px style fraction numerator negative 3 space plus space 2 space ln space x over denominator x cubed end fraction end style

يمثل الاقتران: v(t) = begin mathsize 20px style fraction numerator bold 10 over denominator bold 2 bold t bold space bold plus bold space bold 15 end fraction end style , t begin mathsize 20px style greater or equal than end style0 السرعة المتجهة لسيّارة بدأت الحركة في مسار مستقيم، حيث تقاس v بالقدم لكل ثانية:

(19) أجد تسارع السيّارة عندما t = 5 .

a(t) = begin mathsize 20px style fraction numerator negative 20 over denominator left parenthesis 2 t space plus space 15 right parenthesis squared end fraction end style

a(5) = begin mathsize 20px style fraction numerator negative 20 over denominator left parenthesis 10 space plus space 15 right parenthesis squared end fraction end style = -0.032 ft/s2

(20) أجد تسارع السيّارة عندما t = 20 .

a(20) = begin mathsize 20px style fraction numerator negative 20 over denominator left parenthesis 40 space plus space 15 right parenthesis squared end fraction end style ≈ -0.007 ft/s2

(21) يعطى طول مستطيل بالمقدار 6t + 5 ، ويعطى عرضه بالمقدار begin mathsize 20px style square root of t end style ، حيث t الزمن بالثواني، والأبعاد بالسنتمترات. أجد معدل تغيّر مساحة المستطيل بالنسبة إلى الزمن.

A = begin mathsize 20px style square root of t end style (6t + 5) = 6begin mathsize 20px style t to the power of 3 over 2 end exponent end style + 5begin mathsize 20px style t to the power of 1 half end exponent end style

begin mathsize 20px style fraction numerator d A over denominator d t end fraction end style=  9begin mathsize 20px style t to the power of 3 over 2 end exponent end stylebegin mathsize 20px style 5 over 2 end style begin mathsize 20px style t to the power of negative 1 half end exponent end style  = 9begin mathsize 20px style square root of t end style + begin mathsize 20px style fraction numerator 5 over denominator 2 square root of t end fraction end style  cm2/s

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات