حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل - 2

أتدرب وأحل المسائل

قاعدة السلسلة الأسئلة (25 - 41)

بكتيريا: يمثل الاقتران: A(t) = Ne0.1t عدد الخلايا البكتيرية بعد t ساعة في مجتمع بكتيري:

(25) أجد معدل نمو المجتمع بعد 3 ساعات بدلالة الثابت N .

Error converting from MathML to accessible text.

(26) إذا كان معدل نمو المجتمع بعد k ساعات هو 0.2 خلية لكل ساعة، فما قيمة k بدلالة الثابت N .

Error converting from MathML to accessible text.

 

أجد المشتقة العليا المطلوبة في كلّ ممّا يأتي:

(27) begin mathsize 20px style f left parenthesis x right parenthesis equals sin invisible function application pi x comma space f to the power of ′′ straight prime end exponent left parenthesis x right parenthesis end s

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals s i n invisible function application pi x end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals pi c o s invisible function application pi x end cell row blank cell f to the power of ′′ left parenthesis x right parenthesis equals negative pi squared s i n invisible function application pi x end cell row blank cell f to the power of ′′ straight prime end exponent left parenthesis x right parenthesis equals negative pi cubed c o s invisible function application pi x end cell end table e

(28) begin mathsize 20px style f left parenthesis x right parenthesis equals cos invisible function application left parenthesis 2 x plus 1 right parenthesis comma space f to the power of left parenthesis 5 right parenthesis end exponent left parenthesis x right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals c o s invisible function application left parenthesis 2 x plus 1 right parenthesis end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals negative 2 s i n invisible function application left parenthesis 2 x plus 1 right parenthesis end cell row blank cell f to the power of ′′ left parenthesis x right parenthesis equals negative 4 c o s invisible function application left parenthesis 2 x plus 1 right parenthesis end cell row blank cell f to the power of ′′ straight prime end exponent left parenthesis x right parenthesis equals 8 s i n invisible function application left parenthesis 2 x plus 1 right parenthesis end cell row blank cell f to the power of left parenthesis 4 right parenthesis end exponent left parenthesis x right parenthesis equals 16 c o s invisible function application left parenthesis 2 x plus 1 right parenthesis end cell row blank cell f to the power of left parenthesis 5 right parenthesis end exponent left parenthesis x right parenthesis equals negative 32 s i n invisible function application left parenthesis 2 x plus 1 right parenthesis end cell end table e

(29) begin mathsize 20px style f left parenthesis x right parenthesis equals cos invisible function application x squared comma f to the power of ′′ left parenthesis x right parenthesis end s

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals c o s invisible function application space x squared end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals negative 2 x s i n invisible function application space x squared end cell row blank cell f to the power of ′′ left parenthesis x right parenthesis equals left parenthesis negative 2 x right parenthesis left parenthesis 2 x c o s invisible function application space x squared right parenthesis plus left parenthesis s i n invisible function application space x squared right parenthesis left parenthesis negative 2 right parenthesis end cell row blank cell equals negative 4 x squared c o s invisible function application space x squared minus 2 s i n invisible function application space x squared end cell end table end s

 

(30) إذا كان الاقتران: y = esin x ، فأجد ميل مماس منحنى الاقتران عند النقطة (0, 1).

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals e to the power of s i n invisible function application x end exponent end cell row blank cell fraction numerator d y over denominator d x end fraction equals e to the power of s i n invisible function application x end exponent c o s invisible function application space x end cell end table end style

ميل المماس هو:

begin mathsize 20px style m equals fraction numerator d y over denominator d x end fraction vertical line subscript x equals 0 end subscript equals e to the power of s i n invisible function application 0 end exponent c o s invisible function application 0 equals 1 end style

 

(31) مواد مشعّة: يمكن نمذجة الكمية A (بالغرام) المتبقية من عينة كتلتها الابتدائية 20 g من عنصر البلوتونيوم بعد t يوماً باستعمال الاقتران: begin mathsize 20px style A left parenthesis t right parenthesis equals 20 left parenthesis 1 half right parenthesis to the power of t divided by 140 end exponent end style . أجد معدل تحلل عنصر البلوتويوم عند t = 2 .

Error converting from MathML to accessible text.

إذن يتحلل البلوتونيوم بمعدل 0.098 g كلّ يوم عندما t = 2 .

 

زنبرك: تتحرك كرة معلقة بزنبرك إلى الأعلى وإلى الأسفل، ويحدد الاقتران: s(t) = 0.1 sin 2.4t موقع الكرة عند أيّ زمن لاحق، حيث t الزمن بالثواني، و s الموقع بالسنتيمترات.

(32) أجد السرعة المتجهة للكرة عندما t = 1 .

Error converting from MathML to accessible text.

(33) أجد موقع الكرة عندما تكون سرعتها صفراً.

Error converting from MathML to accessible text.

وهذا يعني أنّ:

Error converting from MathML to accessible text.

أي أنّ:

Error converting from MathML to accessible text.

لكن موقع الكرة هو: 

Error converting from MathML to accessible text.

وبتعويض قيمة sin 2.4t نجد أن الموقع هو:

Error converting from MathML to accessible text.

إذن، عندما تكون سرعة الكرة صفراً يكون موقعها عند 0.1 cm أو -0.1 cm

(34) أجد موقع الكرة عندما تكون تسارعها صفراً.

Error converting from MathML to accessible text.

لكن موقع الكرة هو: 

   Error converting from MathML to accessible text.

وبتعويض قيمة sin 2.4t نجد أن الموقع هو: s = 0.1(0) = 0

إذن، عندما تكون تسارع الكرة صفراً يكون موقعها عند s = 0 ، أي عند مرورها بموقع الاتزان.

 

أجد معادلة المماس لمنحى كل معادلة وسيطية مما يأتي عند النقطة المحددة بقيمة t المعطاة:

(35) x = t + 2 , y = t2 – 1 , t = 1

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d t end fraction equals 2 t comma space of 1em fraction numerator d x over denominator d t end fraction equals 1 end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator fraction numerator d y over denominator d t end fraction over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator 2 t over denominator 1 end fraction equals 2 t end cell end table end style

ميل المماس:

begin mathsize 20px style m equals fraction numerator d y over denominator d x end fraction vertical line subscript t equals 1 end subscript equals 2 cross times 1 equals 2 end style

نقطة التماس:

begin mathsize 20px style x equals 1 plus 2 equals 3 comma space y equals left parenthesis 1 right parenthesis squared minus 1 equals 0 end style

معادلة المماس:

begin mathsize 20px style y minus 0 equals 2 left parenthesis x minus 3 right parenthesis not stretchy rightwards arrow y equals 2 x minus 6 end style

(36) begin mathsize 20px style x equals t over 2 comma space y equals t squared minus 4 comma space t equals negative 1 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d t end fraction equals 2 t comma space of 1em fraction numerator d x over denominator d t end fraction equals 1 half end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator fraction numerator d y over denominator d t end fraction over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator 2 t over denominator 1 half end fraction equals 4 t end cell end table end style

ميل المماس:

begin mathsize 20px style m equals fraction numerator d y over denominator d x end fraction vertical line subscript t equals negative 1 end subscript equals 4 cross times negative 1 equals negative 4 end style

نقطة التماس:

begin mathsize 20px style x equals negative 1 half comma space y equals left parenthesis negative 1 right parenthesis squared minus 4 equals negative 3 end style

معادلة المماس:

begin mathsize 20px style y plus 3 equals negative 4 left parenthesis x plus 1 half right parenthesis not stretchy rightwards arrow y equals negative 4 x minus 5 end style

(37) begin mathsize 20px style x equals t minus sin invisible function application space t comma space y equals 1 minus cos invisible function application space t comma space t equals pi over 3 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d t end fraction equals s i n invisible function application space t comma space of 1em fraction numerator d x over denominator d t end fraction equals 1 minus c o s invisible function application space t end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator fraction numerator d y over denominator d t end fraction over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator s i n invisible function application space t over denominator 1 minus c o s invisible function application space t end fraction end cell end table end style

ميل المماس:

begin mathsize 20px style m equals fraction numerator d y over denominator d x end fraction vertical line subscript t equals pi over 3 end subscript equals fraction numerator sin invisible function application space pi over 3 over denominator 1 minus cos invisible function application space pi over 3 end fraction equals fraction numerator fraction numerator square root of 3 over denominator 2 end fraction over denominator 1 minus 1 half end fraction equals square root of 3 end style

نقطة التماس:

begin mathsize 20px style x equals pi over 3 minus fraction numerator square root of 3 over denominator 2 end fraction comma space y equals 1 minus 1 half equals 1 half end style

معادلة المماس:

begin mathsize 20px style y minus 1 half equals square root of 3 left parenthesis x minus pi over 3 plus fraction numerator square root of 3 over denominator 2 end fraction right parenthesis not stretchy rightwards arrow y equals square root of 3 x minus fraction numerator square root of 3 pi over denominator 3 end fraction plus 2 end style

(38) begin mathsize 20px style x equals sec squared invisible function application space t minus 1 comma space y equals tan invisible function application space t comma space t equals negative pi over 4 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d t end fraction equals s e c squared invisible function application space t comma space of 1em fraction numerator d x over denominator d t end fraction equals 2 cross times s e c invisible function application space t cross times s e c invisible function application space t space t a n invisible function application space t equals 2 s e c squared invisible function application space t space t a n invisible function application space t end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator fraction numerator d y over denominator d t end fraction over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator s e c squared invisible function application space t over denominator 2 s e c squared invisible function application space t space t a n invisible function application space t end fraction equals 1 half c o t invisible function application space t end cell end table end style

ميل المماس:

begin mathsize 20px style m equals fraction numerator d y over denominator d x end fraction vertical line subscript t equals negative pi over 4 end subscript equals 1 half cot invisible function application space left parenthesis negative pi over 4 right parenthesis equals negative 1 half end style

نقطة التماس:

begin mathsize 20px style x equals s e c squared invisible function application space left parenthesis negative pi over 4 right parenthesis minus 1 equals 1 comma space y equals t a n invisible function application space left parenthesis negative pi over 4 right parenthesis equals negative 1 end style

معادلة المماس:

begin mathsize 20px style y plus 1 equals negative 1 half left parenthesis x minus 1 right parenthesis not stretchy rightwards arrow y equals negative 1 half x minus 1 half end style

 

(39) يعطى منحنى بالمعادلة الوسيطية: begin mathsize 20px style x equals 2 left parenthesis t minus sin invisible function application space t right parenthesis comma space y equals 2 left parenthesis 1 minus cos invisible function application space t right parenthesis end style ، حيث: begin mathsize 20px style 0 less or equal than t less or equal than 2 pi end style . أثبت أن ميل المماس وميل العمودي على المماس لمنحى هذه العلاقة عندما begin mathsize 20px style t equals pi over 4 end style هما: begin mathsize 20px style 1 minus square root of 2 g times 1 plus square root of 2 end style على الترتيب.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d t end fraction equals 2 sin invisible function application space t comma space of 1em fraction numerator d x over denominator d t end fraction equals 2 left parenthesis 1 minus cos invisible function application space t right parenthesis end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator fraction numerator d y over denominator d t end fraction over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator 2 sin invisible function application space t over denominator 2 left parenthesis 1 minus cos invisible function application space t right parenthesis end fraction equals fraction numerator sin invisible function application space t over denominator 1 minus cos invisible function application space t end fraction end cell end table end style

ميل المماس:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell m equals fraction numerator d y over denominator d x end fraction vertical line subscript t equals pi over 4 end subscript end cell cell equals fraction numerator sin invisible function application space pi over 4 over denominator 1 minus cos invisible function application space pi over 4 end fraction equals fraction numerator fraction numerator 1 over denominator square root of 2 end fraction over denominator 1 minus fraction numerator 1 over denominator square root of 2 end fraction end fraction equals fraction numerator 1 over denominator square root of 2 minus 1 end fraction cross times fraction numerator square root of 2 plus 1 over denominator square root of 2 plus 1 end fraction end cell row blank cell equals square root of 2 plus 1 end cell end table end style

ميل العمودي على المماس:

begin mathsize 20px style m equals fraction numerator negative 1 over denominator square root of 2 plus 1 end fraction cross times fraction numerator square root of 2 minus 1 over denominator square root of 2 minus 1 end fraction equals 1 minus square root of 2 end style

 

يبين الشكل المجاور منحنيي الاقترانين f(x) و g(x) . إذا كان:

h(x) = f(g(x)) ، وكان: p(x) = g(f(x)) ، فأجد كلاً مما يأتي:

(40) h' (1)

begin mathsize 20px style h to the power of straight prime left parenthesis 1 right parenthesis equals f to the power of straight prime left parenthesis g left parenthesis 1 right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis 1 right parenthesis equals f to the power of straight prime left parenthesis 4 right parenthesis cross times g to the power of straight prime left parenthesis 1 right parenthesis end style

g' (1) ميل المستقيم الذي يمر بالنقطتين (3, 2) و (0, 5) ويساوي -1

f ' (4) ميل المستقيم الذي يمر بالنقطتين (5, 3) و (2, 4) ويساوي -begin mathsize 20px style 1 third end style

begin mathsize 20px style h to the power of straight prime left parenthesis 1 right parenthesis equals negative 1 third cross times negative 1 equals 1 third end style

(41) p' (1)

begin mathsize 20px style p to the power of straight prime left parenthesis 1 right parenthesis equals g to the power of straight prime left parenthesis f left parenthesis 1 right parenthesis right parenthesis cross times f to the power of straight prime left parenthesis 1 right parenthesis equals g to the power of straight prime left parenthesis 2 right parenthesis cross times f to the power of straight prime left parenthesis 1 right parenthesis end style

g' (2) ميل المستقيم الذي يمر بالنقطتين (3, 2) و (0, 5) ويساوي -1

f ' (1) ميل المستقيم الذي يمر بالنقطتين (0, 0) و (2, 4) ويساوي 2

begin mathsize 20px style p to the power of straight prime left parenthesis 1 right parenthesis equals negative 1 cross times 2 equals negative 2 end style

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات