حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

المعادلات التفاضلية

المعادلات التفاضلية

أتحقق من فهمي صفحة (92):

أحدد إذا كان الاقتران المعطى حلاً للمعادلة التفاضلية: begin mathsize 20px style bold italic y to the power of bold ′′ bold minus bold 4 bold italic y to the power of bold prime bold plus bold 3 bold italic y bold equals bold 0 end s في كل مما يأتي:

begin mathsize 20px style y equals 4 e to the power of x plus 5 e to the power of 3 x end exponent end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y to the power of straight prime equals 4 e to the power of x plus 15 e to the power of 3 x end exponent end cell row blank cell y to the power of ′′ equals 4 e to the power of x plus 45 e to the power of 3 x end exponent end cell row blank cell y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals 4 e to the power of x plus 45 e to the power of 3 x end exponent minus 4 left parenthesis 4 e to the power of x plus 15 e to the power of 3 x end exponent right parenthesis plus 3 left parenthesis 4 e to the power of x plus 5 e to the power of 3 x end exponent right parenthesis equals 0 end cell end table e

إذن begin mathsize 20px style y equals 4 e to the power of x plus 5 e to the power of 3 x end exponent end style حل للمعادلة التفاضلية begin mathsize 20px style y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals 0 end s

begin mathsize 20px style y equals sin invisible function application x end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y to the power of straight prime equals cos invisible function application x end cell row blank cell y to the power of ′′ equals negative sin invisible function application x end cell row blank cell y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals negative sin invisible function application x minus 4 cos invisible function application x plus 3 sin invisible function application x equals 2 sin invisible function application x minus 4 cos invisible function application x not equal to 0 end cell end table e

إذن begin mathsize 20px style y equals sin invisible function application x end style ليس حلاً للمعادلة التفاضلية begin mathsize 20px style y to the power of ′′ minus 4 y to the power of straight prime plus 3 y equals 0 end s


الحل العام والحل الخاص للمعادلة التفاضلية

أتحقق من فهمي صفحة (94):

أجد الحل العام للمعادلة التفاضلية: begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals 5 sec squared invisible function application x minus 3 over 2 square root of x end style، ثم أجد الحل الخاص لها الذي يحقق النقطة (0,7).

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d x end fraction equals 5 sec squared invisible function application x minus 3 over 2 square root of x not stretchy ⟹ d y equals left parenthesis 5 sec squared invisible function application x minus 3 over 2 square root of x right parenthesis d x end cell row blank cell integral d y equals integral left parenthesis 5 sec squared invisible function application x minus 3 over 2 square root of x right parenthesis d x end cell end table end sty

الحل العام لهذه المعادلة هو:

begin mathsize 20px style y equals 5 tan invisible function application x minus x to the power of 3 over 2 end exponent plus C end style

لإيجاد الحل الخاص نعوض النقطة (0,7) في الحل العام:

begin mathsize 20px style 7 equals 0 minus 0 plus C not stretchy rightwards double arrow C equals 7 end style

الحل الخاص للمعادلة التفاضلية الذي يحقق النقطة (0,7) هو:

begin mathsize 20px style y equals 5 tan invisible function application x minus x to the power of 3 over 2 end exponent plus plus 7 end style


حل المعادلات التفاضلية بفصل المتغيرات

أتحقق من فهمي صفحة (96):

أحل كلاً من المعادلات التفاضلية الآتية:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals fraction numerator 2 x over denominator y to the power of 4 end fraction end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator 2 x over denominator y to the power of 4 end fraction not stretchy rightwards double arrow 2 x d x equals y to the power of 4 d y end cell row blank cell not stretchy rightwards double arrow integral 2 x d x equals integral y to the power of 4 d y not stretchy rightwards double arrow 1 fifth y to the power of 5 equals x squared plus C end cell end table end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals 2 x minus x e to the power of y end style (b)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d y over denominator d x end fraction equals 2 x minus x e to the power of y not stretchy rightwards double arrow fraction numerator d y over denominator d x end fraction equals x left parenthesis 2 minus e to the power of y right parenthesis end cell row blank cell not stretchy rightwards double arrow fraction numerator d y over denominator 2 minus e to the power of y end fraction equals x d x end cell row blank cell not stretchy rightwards double arrow integral x d x equals integral fraction numerator 1 over denominator 2 minus e to the power of y end fraction cross times e to the power of negative y end exponent over e to the power of negative y end exponent d y end cell row blank cell not stretchy rightwards double arrow integral x d x equals negative 1 half integral fraction numerator negative 2 e to the power of negative y end exponent over denominator 2 e to the power of negative y end exponent minus 1 end fraction d y end cell row blank cell not stretchy rightwards double arrow x squared over 2 equals negative 1 half ln invisible function application vertical line 2 e to the power of negative y end exponent minus 1 vertical line plus C not stretchy rightwards double arrow x squared equals negative ln invisible function application vertical line 2 e to the power of negative y end exponent minus 1 vertical line plus C end cell end table end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals fraction numerator x sin invisible function application x over denominator y end fraction end style (c)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator d y over denominator d x end fraction equals fraction numerator x sin invisible function application x over denominator y end fraction not stretchy rightwards double arrow y d y end cell cell equals x sin invisible function application x d x end cell row blank cell not stretchy rightwards double arrow integral y d y equals integral x sin invisible function application x d x end cell end table end style

نجد begin mathsize 20px style integral x sin invisible function application x d x end style بالأجزاء:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals x space of 1em d v equals sin invisible function application x d x end cell row blank cell d u equals d x space of 1em v equals negative cos invisible function application x end cell row blank cell not stretchy rightwards double arrow integral y d y equals integral x sin invisible function application x d x end cell row blank cell not stretchy rightwards double arrow 1 half y squared equals negative x cos invisible function application x minus integral negative cos invisible function application x d x end cell row blank cell not stretchy rightwards double arrow 1 half y squared equals negative x cos invisible function application x plus sin invisible function application x plus C end cell end table end style

begin mathsize 20px style sin squared invisible function application x fraction numerator d y over denominator d x end fraction equals y squared cos squared invisible function application x end style (d)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell sin squared invisible function application x fraction numerator d y over denominator d x end fraction equals y squared cos squared invisible function application x end cell row blank cell sin squared invisible function application x d y equals y squared cos squared invisible function application x d x end cell row blank cell fraction numerator d y over denominator y squared end fraction equals fraction numerator cos squared invisible function application x over denominator sin squared invisible function application x end fraction d x not stretchy rightwards double arrow integral y to the power of negative 2 end exponent d y equals integral cot squared invisible function application x d x end cell row blank cell integral y to the power of negative 2 end exponent d y equals integral left parenthesis csc squared invisible function application x minus 1 right parenthesis d x end cell row blank cell not stretchy rightwards double arrow fraction numerator negative 1 over denominator y end fraction equals negative cot invisible function application x minus x plus C not stretchy rightwards double arrow 1 over y equals x plus cot invisible function application x plus C end cell end table end style

أتحقق من فهمي صفحة (98):

أجد الحل الخاص الذي يحقق الشرط الأولي المعطى لكل معادلة تفاضلية مما يأتي:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals x y squared e to the power of 2 x end exponent comma y left parenthesis 0 right parenthesis equals 1 end style (a)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell d y equals x y squared e to the power of 2 x end exponent d x end cell row blank cell integral fraction numerator d y over denominator y squared end fraction equals integral x e to the power of 2 x end exponent d x end cell end table end style

نجد begin mathsize 20px style integral x e to the power of 2 x end exponent d x end style بالأجزاء:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell u equals x space of 1em d v equals e to the power of 2 x end exponent d x end cell row blank cell d u equals d x space of 1em v equals 1 half e to the power of 2 x end exponent end cell row blank cell not stretchy rightwards double arrow integral fraction numerator d y over denominator y squared end fraction equals 1 half x e to the power of 2 x end exponent minus integral 1 half e to the power of 2 x end exponent d x end cell end table end style

الحل العام هو:

begin mathsize 20px style not stretchy rightwards double arrow negative 1 over y equals 1 half x e to the power of 2 x end exponent minus 1 fourth e to the power of 2 x end exponent plus C end style

بتعويض (0,1):

begin mathsize 20px style negative 1 equals negative 1 fourth plus C not stretchy rightwards double arrow C equals negative 3 over 4 end style

الحل الخاص هو:

begin mathsize 20px style negative 1 over y equals 1 half x e to the power of 2 x end exponent minus 1 fourth e to the power of 2 x end exponent minus 3 over 4 end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals y cos invisible function application x comma y left parenthesis pi over 2 right parenthesis equals 1 end style (b)

begin mathsize 20px style fraction numerator d y over denominator y end fraction equals cos invisible function application x d x end style

الحل العام هو: 

begin mathsize 20px style integral fraction numerator d y over denominator y end fraction equals integral cos invisible function application x d x not stretchy rightwards double arrow ln invisible function application vertical line y vertical line equals sin invisible function application x plus C end style

بتعويض begin mathsize 20px style left parenthesis pi over 2 comma 1 right parenthesis end style

begin mathsize 20px style 0 equals 1 plus C not stretchy rightwards double arrow C equals negative 1 end style

الحل الخاص:

begin mathsize 20px style ln invisible function application vertical line y vertical line equals sin invisible function application x minus 1 end style


المعادلات التفاضلية والحركة في مسار مستقيم

أتحقق من فهمي صفحة (100):

يتحرك جسيم في مسار مستقيم، وتعطى سرعته المتجهة بالمعادلة التفاضلية: begin mathsize 20px style fraction numerator d s over denominator d t end fraction equals s t square root of t plus 1 end root end style، حيث begin mathsize 20px style t end style الزمن بالثواني، وbegin mathsize 20px style s end style موقع الجسيم بالأمتار. أجد موقع الجسيم بعد 3 ثوان من بدء الحركة، علما بأن begin mathsize 20px style s left parenthesis 0 right parenthesis equals 1 end style.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d s over denominator d t end fraction equals s t square root of t plus 1 end root not stretchy rightwards double arrow fraction numerator d s over denominator s end fraction equals t square root of t plus 1 end root d t end cell row blank cell integral fraction numerator d s over denominator s end fraction equals integral t square root of t plus 1 end root d t end cell row blank cell u equals t plus 1 not stretchy rightwards double arrow d u equals d t comma t equals u minus 1 end cell row blank cell integral t square root of t plus 1 end root d t equals integral left parenthesis u minus 1 right parenthesis square root of u d u equals integral left parenthesis u minus 1 right parenthesis u to the power of 1 half end exponent d u equals integral left parenthesis u to the power of 3 over 2 end exponent minus u to the power of 1 half end exponent right parenthesis d u end cell row blank cell equals 2 over 5 u to the power of 5 over 2 end exponent minus 2 over 3 u to the power of 3 over 2 end exponent plus C end cell row blank cell equals 2 over 5 left parenthesis t plus 1 right parenthesis to the power of 5 over 2 end exponent minus 2 over 3 left parenthesis t plus 1 right parenthesis to the power of 3 over 2 end exponent plus C end cell end table end style

الموقع begin mathsize 20px style b b b end style لا يمكن أن يكون 0 لأن begin mathsize 20px style ln invisible function application 0 end style غير معرف ولا يمكن أن يكون سالباً لأن begin mathsize 20px style s left parenthesis 0 right parenthesis equals 1 end style واقتران الموقع متصل، ولذا يمكننا أن نحذف رمز القيمة المطلقة وتعتبر begin mathsize 20px style ln invisible function application vertical line s vertical line equals ln invisible function application s end style بتعريض begin mathsize 20px style s equals 1 end style عندما begin mathsize 20px style t equals 0 end style ينتج:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell 0 equals 2 over 5 minus 2 over 3 plus C not stretchy rightwards double arrow C equals 4 over 15 end cell row blank cell not stretchy rightwards double arrow ln invisible function application s equals 2 over 5 left parenthesis t plus 1 right parenthesis to the power of 5 over 2 end exponent minus 2 over 3 left parenthesis t plus 1 right parenthesis to the power of 3 over 2 end exponent plus 4 over 15 end cell end table end style

نعوض begin mathsize 20px style t equals 3 end style لنجد s الموقع المطلوب:

begin mathsize 20px style ln invisible function application s left parenthesis 3 right parenthesis equals 64 over 5 minus 16 over 3 plus 4 over 15 equals 116 over 15 not stretchy rightwards double arrow s left parenthesis 3 right parenthesis equals e to the power of 116 over 15 end exponent end style

أتحقق من فهمي صفحة (102):

غزالغزلان: يمكن نمذجة معدل تغير عدد الغزلان فـي إحدى الغابات بالمعادلة التفاضلية: begin mathsize 20px style fraction numerator bold d bold P over denominator bold d bold t end fraction bold equals bold 1 over bold 20000 bold italic P bold left parenthesis bold 1000 bold minus bold italic P bold right parenthesis end style، حيث begin mathsize 20px style bold italic P end style عدد الغزلان في الغابة بعد begin mathsize 20px style bold italic t end style سنة من بدء دراسة عليها:

(a) أحل المعادلة التفاضلية لإيجاد عدد الغزلان في الغابة بعد سنة من بدء الدراسة، علماً بأن عددها عند بدء الدراسة هو 2500 غزال.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell fraction numerator d P over denominator d t end fraction equals 1 over 20000 p left parenthesis 1000 minus P right parenthesis end cell row blank cell integral fraction numerator d P over denominator P left parenthesis 1000 minus P right parenthesis end fraction equals integral 1 over 20000 d t end cell end table end style

بتجزئة الكسر داخل التكامل في الطرف الأيسر:

begin mathsize 20px style integral left parenthesis fraction numerator 1 over 1000 over denominator P end fraction plus fraction numerator 1 over 1000 over denominator 1000 minus P end fraction right parenthesis d P equals integral 1 over 20000 d t end style

حل عام:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell space of 1em 1 over 1000 ln invisible function application vertical line P vertical line minus 1 over 1000 ln invisible function application vertical line 1000 minus P vertical line equals 1 over 20000 t plus C end cell row blank cell 20 ln invisible function application vertical line P vertical line minus 20 ln invisible function application vertical line 1000 minus P vertical line equals t plus C end cell row blank cell 20 ln invisible function application vertical line fraction numerator P over denominator 1000 minus P end fraction vertical line equals t plus C end cell end table end style

بتعويض P=2500 عند t=0 ينتج:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell C equals 20 ln invisible function application 2500 over 1500 equals 20 ln invisible function application 5 over 3 end cell row blank cell not stretchy rightwards double arrow 20 ln invisible function application vertical line fraction numerator P over denominator 1000 minus P end fraction vertical line equals t plus 20 ln invisible function application 5 over 3 end cell end table end style

(b) بعد كم سنة يصبح عدد الغزلان في الغابة 1800 غزال؟

نعويض P=1800 في المعادلة الأخيرة:

begin mathsize 20px style not stretchy rightwards double arrow 20 ln invisible function application left parenthesis 9 over 4 right parenthesis equals t plus 20 ln invisible function application 5 over 3 not stretchy rightwards double arrow t equals 20 ln invisible function application 27 over 20 almost equal to 6 end style

إذن، يصبح عدد الغزلان 1800 غزال بعد 6 سنوات تقريباً من بدء الدراسة.

إعداد : شبكة منهاجي التعليمية

10 / 07 / 2023

النقاشات