حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل - 1

أتدرب وأحل المسائل

قاعدة السلسلة الأسئلة (1 - 24)

أجد مشتقة كل اقتران ممّا يأتي:

(1) f(x) = e4x + 2

f '(x) = 4e4x + 2

(2) f(x) = 50e2x - 10

f '(x) = 100e2x - 10

(3) f(x) = cos (x2 – 3x – 4)

f '(x) = - (2x – 3) sin (x2 – 3x – 4)

f '(x) = (3 – 2x) sin (x2 – 3x – 4)

(4) f(x) = 10x2 begin mathsize 20px style e to the power of negative x squared end exponent end style

f '(x) = (10x2) (-2xbegin mathsize 20px style e to the power of negative x squared end exponent end style) + (begin mathsize 20px style e to the power of negative x squared end exponent end style) (20x) = 20xbegin mathsize 20px style e to the power of negative x squared end exponent end style (1 – x2)

(5) f(x) = begin mathsize 20px style square root of fraction numerator x space plus space 1 over denominator x end fraction end root end style

f (x) = begin mathsize 20px style square root of fraction numerator x space plus space 1 over denominator x end fraction end root end stylebegin mathsize 20px style square root of 1 space plus space 1 over x end root end style  

f '(x) = begin mathsize 20px style fraction numerator negative begin display style 1 over x squared end style over denominator square root of 1 space plus space begin display style 1 over x end style end root end fraction end style = - begin mathsize 20px style fraction numerator negative 1 over denominator 2 x squared space square root of 1 space plus space begin display style 1 over x end style end root space end fraction end style

(6) f(x) = x2 tan begin mathsize 20px style 1 over x end style

f '(x) = (x2) (- begin mathsize 20px style 1 over x squared end style sec2 begin mathsize 20px style 1 over x end style) + (tan begin mathsize 20px style 1 over x end style) (2x

f '(x) = -sec2 begin mathsize 20px style 1 over x end style +  2x tan begin mathsize 20px style 1 over x end style

(7) f(x) = 3x – 5 cos (πx)2

f '(x) = 3 + 5(2) (πx) (π) sin (πx)2 = 3 + 10π2x sin (πx)2

(8) f(x) = ln (begin mathsize 20px style fraction numerator 1 space plus space e to the power of x over denominator 1 space minus space e to the power of x end fraction end style)

f (x) = ln (begin mathsize 20px style fraction numerator 1 space plus space e to the power of x over denominator 1 space minus space e to the power of x end fraction end style) = ln (1 + ex) – ln (1 – ex)

f '(x) = begin mathsize 20px style fraction numerator e to the power of x over denominator 1 space plus space e to the power of x end fraction end stylebegin mathsize 20px style fraction numerator e to the power of x over denominator 1 space minus space e to the power of x end fraction end style = begin mathsize 20px style fraction numerator 2 e to the power of x over denominator 1 space minus space e squared to the power of x end fraction end style

(9) f(x) = (ln x)4

f '(x) = begin mathsize 20px style 4 over x end style (ln x)3

(10) f(x) = sin begin mathsize 20px style cube root of x end style + begin mathsize 20px style cube root of sin space x end root end style

f '(x) = begin mathsize 20px style fraction numerator 1 over denominator 3 cube root of x squared end root end fraction end style cos begin mathsize 20px style cube root of x end style + begin mathsize 20px style fraction numerator cos space x over denominator 3 cube root of sin squared space x end root end fraction end style

(11) f(x) = begin mathsize 20px style fifth root of x squared plus space 8 x end root end style

f '(x) = begin mathsize 20px style fraction numerator 2 x space plus space 8 over denominator 5 fifth root of left parenthesis x squared space plus space 8 x right parenthesis to the power of 4 end root end fraction end style

(12) f(x) = begin mathsize 20px style 3 to the power of 2 x end exponent over x end style

f '(x) = begin mathsize 20px style fraction numerator left parenthesis x right parenthesis space left parenthesis 2 space ln space 3 right parenthesis space 3 to the power of 2 x end exponent space minus space 3 to the power of 2 x end exponent over denominator x squared end fraction end style = begin mathsize 20px style fraction numerator left parenthesis negative 1 plus space 2 x space ln space 3 right parenthesis space 3 to the power of 2 x end exponent space over denominator x squared end fraction end style

(13) f(x) = 2-x cos πx

f '(x) = (2-x) (-π sin πx) + (cos πx) (-ln 2)2-x

= - π 2-x sin πx – 2-x (cos πx) ln 2

(14) f(x) = begin mathsize 20px style fraction numerator 10 space log subscript 4 space x over denominator x end fraction end style

f '(x) = begin mathsize 20px style fraction numerator space begin display style fraction numerator 10 x over denominator x space ln space 4 end fraction end style minus space 10 space log subscript 4 space x over denominator x squared end fraction end style = begin mathsize 20px style fraction numerator space begin display style fraction numerator 10 over denominator ln space 4 end fraction end style minus space 10 space log subscript 4 space x over denominator x squared end fraction end style

(15) f(x) = (begin mathsize 20px style fraction numerator sin space x over denominator 1 space plus space cos space x end fraction end style)2

f '(x) = 2 (begin mathsize 20px style fraction numerator sin space x over denominator 1 space plus space cos space x end fraction end style)1 x begin mathsize 20px style fraction numerator left parenthesis 1 space plus space cos space x right parenthesis space left parenthesis cos space x right parenthesis space minus space left parenthesis sin space x right parenthesis space left parenthesis negative sin space x right parenthesis over denominator left parenthesis 1 space plus space cos space x right parenthesis squared end fraction end style 

         = 2 x begin mathsize 20px style fraction numerator sin space x over denominator 1 space plus space cos space x end fraction end style x begin mathsize 20px style fraction numerator 1 over denominator 1 space plus space cos space x end fraction end style

         = begin mathsize 20px style fraction numerator 2 space sin space x over denominator left parenthesis 1 space plus space cos space x right parenthesis squared end fraction end style

(16) f(x) = log3 (1 + x ln x)

f '(x) = begin mathsize 20px style fraction numerator left parenthesis x right parenthesis space left parenthesis begin display style 1 over x end style right parenthesis space plus space left parenthesis ln space x right parenthesis space left parenthesis 1 right parenthesis over denominator left parenthesis ln space 3 right parenthesis space left parenthesis 1 space plus space x space ln space x right parenthesis end fraction end style = begin mathsize 20px style fraction numerator 1 plus space ln space x over denominator left parenthesis ln space 3 right parenthesis space left parenthesis 1 space plus space x space ln space x right parenthesis end fraction end style

(17) f(x) = esin 2x + sin (e2x)

f '(x) = 2esin 2x cos 2x + 2e2x cos (e2x)

(18) f(x) = tan4 (sec (cos x))

f '(x) = 4(tan (sec(cos x)))3 sec2 (sec(cos x)) x sec(cos x) tan(cos x) x (-sin x)  

  = -4 tan3 (sec(cos x)) sec2 (sec(cos x)) sec(cos x) tan(cos x) sin x  

 

أجد معادلة المماس لكل اقتران ممّا يأتي عند قيمة x المعطاة:

(19) begin mathsize 20px style f left parenthesis x right parenthesis equals 4 e to the power of negative 0.5 x squared end exponent space comma space x equals negative 2 end style

Error converting from MathML to accessible text.

ميل المماس هو:

Error converting from MathML to accessible text.

معادلة المماس هي:

begin mathsize 20px style y minus 4 over e squared equals 8 over e squared left parenthesis x plus 2 right parenthesis space of 1em not stretchy rightwards arrow space of 1em y equals 8 over e squared x plus 20 over e squared end style

(20) begin mathsize 20px style f left parenthesis x right parenthesis equals x plus cos invisible function application space 2 x space comma space x equals 0 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals x plus c o s invisible function application 2 x end cell row blank cell f left parenthesis 0 right parenthesis equals 0 plus c o s invisible function application left parenthesis 0 right parenthesis equals 1 end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals 1 minus 2 s i n invisible function application space 2 x end cell end table end style

ميل المماس هو:

begin mathsize 20px style m equals f to the power of straight prime left parenthesis 0 right parenthesis equals 1 minus 2 s i n invisible function application 2 left parenthesis 0 right parenthesis equals 1 end style

معادلة المماس هي:

begin mathsize 20px style y minus 1 equals 1 left parenthesis x minus 0 right parenthesis not stretchy rightwards arrow y equals x plus 1 end style

(21) begin mathsize 20px style f left parenthesis x right parenthesis equals 2 to the power of x space comma space x equals 0 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals 2 to the power of x end cell row blank cell f left parenthesis 0 right parenthesis equals 2 to the power of 0 equals 1 end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals left parenthesis l n invisible function application 2 right parenthesis 2 to the power of x end cell end table end style

ميل المماس هو:

begin mathsize 20px style m equals f to the power of straight prime left parenthesis 0 right parenthesis equals left parenthesis l n invisible function application 2 right parenthesis 2 to the power of 0 equals l n invisible function application 2 end style

معادلة المماس هي:

begin mathsize 20px style y minus 1 equals left parenthesis l n invisible function application 2 right parenthesis left parenthesis x minus 0 right parenthesis not stretchy rightwards arrow y equals left parenthesis l n invisible function application 2 right parenthesis x plus 1 end style

(22) begin mathsize 20px style f left parenthesis x right parenthesis equals square root of x plus 1 end root sin invisible function application fraction numerator pi x over denominator 2 end fraction space comma space x equals 3 end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals square root of x plus 1 end root s i n invisible function application fraction numerator pi x over denominator 2 end fraction end cell row blank cell f left parenthesis 3 right parenthesis equals 2 s i n invisible function application fraction numerator 3 pi over denominator 2 end fraction equals negative 2 end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals left parenthesis square root of x plus 1 end root right parenthesis left parenthesis pi over 2 c o s invisible function application fraction numerator pi x over denominator 2 end fraction right parenthesis plus left parenthesis s i n invisible function application fraction numerator pi x over denominator 2 end fraction right parenthesis left parenthesis fraction numerator 1 over denominator 2 square root of x plus 1 end root end fraction right parenthesis end cell end table end style

ميل المماس هو:

begin mathsize 20px style m equals f to the power of straight prime left parenthesis 3 right parenthesis equals left parenthesis 2 right parenthesis left parenthesis 0 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis 1 fourth right parenthesis equals negative 1 fourth end style

معادلة المماس هي:

begin mathsize 20px style y plus 2 equals negative 1 fourth left parenthesis x minus 3 right parenthesis not stretchy rightwards arrow y equals negative 1 fourth x minus 5 over 4 end style

 

(23) إذا كان: begin mathsize 20px style A left parenthesis x right parenthesis equals f left parenthesis g left parenthesis x right parenthesis right parenthesis end style ، وكان: begin mathsize 20px style f left parenthesis negative 2 right parenthesis equals 8 comma space f to the power of straight prime left parenthesis negative 2 right parenthesis equals 4 comma f to the power of straight prime left parenthesis 5 right parenthesis equals 3 comma space g left parenthesis 5 right parenthesis equals negative 2 comma space g to the power of straight prime left parenthesis 5 right parenthesis equals 6 end style فأجد begin mathsize 20px style A to the power of straight prime left parenthesis 5 right parenthesis end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell A to the power of straight prime left parenthesis x right parenthesis end cell cell equals f to the power of straight prime left parenthesis g left parenthesis x right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis x right parenthesis end cell row cell A to the power of straight prime left parenthesis 5 right parenthesis end cell cell equals f to the power of straight prime left parenthesis g left parenthesis 5 right parenthesis right parenthesis cross times g to the power of straight prime left parenthesis 5 right parenthesis end cell row blank cell equals f to the power of straight prime left parenthesis negative 2 right parenthesis cross times 6 end cell row blank cell equals 4 cross times 6 equals 24 end cell end table end style

 

(24) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator x over denominator square root of x squared plus 1 end root end fraction end style ، فأثبت أنّ begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals fraction numerator 1 over denominator square root of left parenthesis x squared plus 1 right parenthesis cubed end root end fraction end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals fraction numerator x over denominator square root of x squared plus 1 end root end fraction end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals fraction numerator left parenthesis square root of x squared plus 1 end root right parenthesis left parenthesis 1 right parenthesis minus left parenthesis x right parenthesis left parenthesis fraction numerator x over denominator square root of x squared plus 1 end root end fraction right parenthesis over denominator x squared plus 1 end fraction end cell row blank cell equals fraction numerator left parenthesis fraction numerator x squared plus 1 minus x squared over denominator square root of x squared plus 1 end root end fraction right parenthesis over denominator x squared plus 1 end fraction end cell row blank cell equals fraction numerator 1 over denominator left parenthesis x squared plus 1 right parenthesis square root of x squared plus 1 end root end fraction end cell row blank cell equals fraction numerator 1 over denominator square root of left parenthesis x squared plus 1 right parenthesis cubed end root end fraction end cell end table end style

إعداد : شبكة منهاجي التعليمية

19 / 01 / 2023

النقاشات
khadejah

أين أجد إجابات الأسئلة المتبقية؟

إضافة رد

0 ردود