حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

الاشتقاق الضمني

العلاقة الضمنية ومشتقتها

أتحقق من فهمي صفحة 60

أجد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style لكلّ ممّا يأتي:

(a) x2 + y2 = 13

x2 + y2 = 13

2x + 2y begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 0

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = -begin mathsize 20px style fraction numerator 2 x over denominator 2 y end fraction end style = -begin mathsize 20px style x over y end style

(b) 2x + 5y2 = sin y

2x + 5y2 = sin y

2 + 10y begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = cos begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style(10y – cos y) = -2

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator negative 2 over denominator 10 y space minus space cos space y end fraction end style 


أتحقق من فهمي صفحة 62

أجد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style لكلّ ممّا يأتي:

(a) 3xy2 + y3 = 8

3xy2 + y3 = 8

6xy begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style+ 3y2 + 3y2 begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 0

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = - begin mathsize 20px style fraction numerator 3 y squared over denominator 6 x y space plus space 3 y squared end fraction end style

(b) tan (xy) = 2xy3 + 1

tan (xy) = 2xy3 + 1

(1 - begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style) sec2 (xy) = 6xy2 begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + 2y3

sec2 (xy) – sec2 (xybegin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 6xy2 begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + 2y3

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style(6xy2 + sec2 (x – y)) = sec2 (x – y) – 2y3

 begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator sec squared space left parenthesis x space minus space y right parenthesis space minus space 2 y cubed over denominator 6 x y squared space plus space sec squared space left parenthesis x space minus space y right parenthesis end fraction end style 

(c) x2 = begin mathsize 20px style fraction numerator x space minus space y over denominator x space plus space y end fraction end style 

x2 = begin mathsize 20px style fraction numerator x space minus space y over denominator x space plus space y end fraction end style

2x = begin mathsize 20px style fraction numerator left parenthesis x space plus space y right parenthesis space left parenthesis 1 space minus space begin display style fraction numerator d y over denominator d x end fraction end style right parenthesis space minus space left parenthesis x space minus space y right parenthesis space left parenthesis 1 space plus space fraction numerator d y over denominator d x end fraction right parenthesis over denominator left parenthesis x space plus space y right parenthesis squared end fraction end style

2x (x + y)2 = x – x begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + y – y begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style - x – x begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + y + y begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style

2x begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 2y – 2x (x + y)2

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator 2 y space minus space 2 x space left parenthesis x space plus space y right parenthesis squared over denominator 2 x end fraction end style = begin mathsize 20px style fraction numerator y space minus space x space left parenthesis x space plus space y right parenthesis squared over denominator x end fraction end style

أو يمكن تبسيط العلاقة قبل الاشتقاق كالآتي:

x2 = begin mathsize 20px style fraction numerator x space minus space y over denominator x space plus space y end fraction end style   →    x3 + x2y = xy

→  3x2 + x2 begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + 2xy = 1 - begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style

→   begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + x2 begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 1 – 3x2 – 2xy

→   begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style (1 + x2) = 1 – 3x2 – 2xy

→  begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator 1 space minus space 3 x squared space minus space 2 x y over denominator 1 space plus space x squared end fraction end style


ميل المماس لمنحنى علاقة ضمنية

أتحقق من فهمي صفحة 63

(a) أجد ميل مماس منحنى العلاقة: y2 = ln x عند النقطة (e, 1).

y2 = ln x  →  2y begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style 1 over x end style

→ begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator 1 over denominator 2 x y end fraction end style

begin mathsize 20px style right enclose fraction numerator d y over denominator d x end fraction end enclose subscript space left parenthesis e comma space 1 right parenthesis end subscript end style = begin mathsize 20px style fraction numerator 1 over denominator 2 e end fraction end style

 

(b) أجد ميل العلاقة:(y – 3)2 = 4(x – 5)  عندما x = 6 .

نجد قيمة y عندما x = 6 .

(y – 3)2 = 4(6 – 5) →  (y – 3)2 = 4

→   y – 3 = begin mathsize 20px style plus-or-minus end style2

→   y = 5 or y = 1

باشتقاق طرفي العلاقة (y – 3)2 = 4(x – 5) بالنسبة إلى x ينتج أنّ:

2 (y – 3) begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style= 4

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator 2 over denominator y space minus 3 end fraction end style

ميل المماس عند النقطة الأولى هو:

  begin mathsize 20px style right enclose fraction numerator d y over denominator d x end fraction end enclose subscript space left parenthesis 6 comma space 1 right parenthesis end subscript end stylebegin mathsize 20px style fraction numerator 2 over denominator 1 space minus 3 end fraction end style = -1

ميل المماس عند النقطة الثانية هو:

 begin mathsize 20px style right enclose fraction numerator d y over denominator d x end fraction end enclose subscript space left parenthesis 6 comma space 5 right parenthesis end subscript end stylebegin mathsize 20px style fraction numerator 2 over denominator 5 space minus 3 end fraction end style = 1


معادلة المماس لمنحنى علاقة ضمنية

أتحقق من فهمي صفحة 65

أجد معادلة المماس لمنحنى العلاقة: x2 + y3 – 3xy = 17 عند النقطة (2, 3).

x3 + y3 – 3xy = 17  →  3x2 + 3y2begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style - 3xbegin mathsize 20px style fraction numerator d y over denominator d x end fraction end style - 3y = 0

بتعويض x = 2 ، و y = 3 ينتج أّن:

3(2)2 + 3(3)2begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style - 3(2)begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style - 3(3) = 0

begin mathsize 20px style right enclose fraction numerator d y over denominator d x end fraction end enclose subscript space left parenthesis 2 comma space 3 right parenthesis end subscript end style = - begin mathsize 20px style 1 over 7 end style

ميل المماس هو: begin mathsize 20px style 1 over 7 end style -

إذن معادلة المماس هي:

y – 3 = - begin mathsize 20px style 1 over 7 end style(x – 2)

y = - begin mathsize 20px style 1 over 7 end style x + begin mathsize 20px style 23 over 7 end style


المشتقة الثانية للعلاقات الضمنية

أتحقق من فهمي صفحة 66

إذا كان: xy + y2 = 2x ، فأجد begin mathsize 20px style fraction numerator d squared y over denominator d x squared end fraction end style .

xy + y2 = 2x  →  xbegin mathsize 20px style fraction numerator d y over denominator d x end fraction end style + y + 2ybegin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 2

→ begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator 2 space minus space y over denominator x space plus space 2 y end fraction end style

→ begin mathsize 20px style fraction numerator d squared y over denominator d x squared end fraction end style = begin mathsize 20px style fraction numerator left parenthesis x space plus space 2 y right parenthesis space left parenthesis negative begin display style fraction numerator d y space over denominator d x end fraction end style right parenthesis space minus space left parenthesis 2 space minus space y right parenthesis space left parenthesis 1 space plus space 2 begin display style fraction numerator d y space over denominator d x end fraction end style right parenthesis over denominator left parenthesis x space plus space 2 y right parenthesis squared end fraction end style

              = begin mathsize 20px style fraction numerator left parenthesis x space plus space 2 y right parenthesis space left parenthesis begin display style fraction numerator y space minus space 2 space over denominator x space plus space 2 y end fraction end style right parenthesis space minus space left parenthesis 2 space minus space y right parenthesis space left parenthesis 1 space plus space 2 begin display style fraction numerator 2 space minus space y space over denominator x space plus space 2 y end fraction end style right parenthesis over denominator left parenthesis x space plus space 2 y right parenthesis squared end fraction end style

              = begin mathsize 20px style fraction numerator left parenthesis x space plus space 2 y right parenthesis space left parenthesis begin display style y space minus space 2 end style right parenthesis space minus space left parenthesis 2 space minus space y right parenthesis space left parenthesis x space plus space 4 right parenthesis over denominator left parenthesis x space plus space 2 y right parenthesis cubed end fraction end style

              = begin mathsize 20px style fraction numerator 2 x y space minus space 4 x space plus space 2 y squared space minus space 8 over denominator left parenthesis x space plus space 2 y right parenthesis cubed end fraction end style


المشتقة الثانية للمعادلات الوسيطية

أتحقق من فهمي صفحة 67

أجد begin mathsize 20px style fraction numerator d squared y over denominator d x squared end fraction end style للمعادلة الوسيطية الآتية عندما t = 2 :

x = 3t2 + 1 , y = t3 – 2t2

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = begin mathsize 20px style fraction numerator begin display style fraction numerator d y over denominator d t end fraction end style over denominator begin display style fraction numerator d x over denominator d t end fraction end style end fraction end stylebegin mathsize 20px style fraction numerator 3 t squared space minus space 4 t over denominator 6 t end fraction end style = begin mathsize 20px style 1 half end style t - begin mathsize 20px style 2 over 3 end style

begin mathsize 20px style fraction numerator d squared y over denominator d x squared end fraction end style = begin mathsize 20px style fraction numerator begin display style fraction numerator d over denominator d t end fraction left parenthesis fraction numerator d y over denominator d t end fraction right parenthesis end style over denominator begin display style fraction numerator d x over denominator d t end fraction end style end fraction end stylebegin mathsize 20px style fraction numerator begin display style 1 half end style over denominator 6 t end fraction end style = begin mathsize 20px style fraction numerator 1 over denominator 12 t end fraction end style 

begin mathsize 20px style right enclose fraction numerator d squared y over denominator d x squared end fraction end enclose subscript space t equals 2 end subscript end style = begin mathsize 20px style 1 over 24 end style


الاشتقاق اللوغارتيمي

أتحقق من فهمي صفحة 69

أجد مشتقة كل اقتران ممّا يأتي باستعمال الاشتقاق اللوغاريتمي:

(a) ybegin mathsize 20px style x to the power of square root of x end exponent end style , x > 0

ybegin mathsize 20px style x to the power of square root of x end exponent end style →  ln y = ln begin mathsize 20px style x to the power of square root of x end exponent end style

→  ln ybegin mathsize 20px style square root of x end style ln x

→ begin mathsize 20px style 1 over y end style (begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style)  = begin mathsize 20px style square root of x end style (begin mathsize 20px style 1 over x end style) + begin mathsize 20px style fraction numerator 1 over denominator 2 square root of x end fraction end style ln x

→  begin mathsize 20px style fraction numerator d y over denominator d x end fraction end stylebegin mathsize 20px style fraction numerator y over denominator square root of x end fraction end stylebegin mathsize 20px style fraction numerator y over denominator 2 space square root of x end fraction end style ln x  →  begin mathsize 20px style fraction numerator d y over denominator d x end fraction end stylebegin mathsize 20px style fraction numerator x to the power of square root of x end exponent over denominator square root of x end fraction end stylebegin mathsize 20px style fraction numerator x to the power of square root of x end exponent over denominator 2 space square root of x end fraction end style ln x

(b) y = begin mathsize 20px style square root of fraction numerator x space minus space 1 over denominator x to the power of 4 space plus space 1 end fraction end root end style

ybegin mathsize 20px style square root of fraction numerator x space minus space 1 over denominator x to the power of 4 space plus space 1 end fraction end root end style  →  ln y  = ln begin mathsize 20px style square root of fraction numerator x space minus space 1 over denominator x to the power of 4 space plus space 1 end fraction end root end style

→  ln ybegin mathsize 20px style 1 half end style ln begin mathsize 20px style fraction numerator x space minus space 1 over denominator x to the power of 4 space plus space 1 end fraction end style

→  ln ybegin mathsize 20px style 1 half end style (ln (x – 1) – ln (x4 + 1))

→  begin mathsize 20px style 1 over y end style (begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style) = begin mathsize 20px style fraction numerator 1 over denominator 2 space left parenthesis x space minus space 1 right parenthesis end fraction end stylebegin mathsize 20px style fraction numerator 2 x cubed over denominator x to the power of 4 space plus space 1 end fraction end style

→  begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = (begin mathsize 20px style fraction numerator 1 over denominator 2 space left parenthesis x space minus space 1 right parenthesis end fraction end style + begin mathsize 20px style fraction numerator 2 x cubed over denominator x to the power of 4 space plus space 1 end fraction end style) begin mathsize 20px style square root of fraction numerator x space minus space 1 over denominator x to the power of 4 space plus space 1 end fraction end root end style

إعداد : شبكة منهاجي التعليمية

19 / 01 / 2023

النقاشات