حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

الاشتقاق الضمني

تبرير: إذا كان: x2y2 = 1 ، فأجيب عن الأسئلة الأربعة الآتية تباعاً:

(43) أجد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell x squared minus y squared equals 1 end cell cell not stretchy rightwards arrow 2 x minus 2 y fraction numerator d y over denominator d x end fraction equals 0 end cell row blank cell not stretchy rightwards arrow fraction numerator d y over denominator d x end fraction equals x over y end cell end table end style

 

(44) يمكن التعبير عن منحنى العلاقة: x2y2 = 1 بالمعادلة الوسيطية: x = sec t , y = tan t ، حيث: begin mathsize 20px style negative pi over 2 less or equal than t less or equal than pi over 2 end style

أستعمل هذه الحقيقة لإيجاد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style بدلالة t .

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals fraction numerator fraction numerator d y over denominator d t end fraction over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator s e c squared invisible function application space t over denominator s e c invisible function application t space t a n invisible function application space t end fraction equals fraction numerator s e c invisible function application space t over denominator t a n invisible function application space t end fraction end style

 

(45) أثبت أن المقدارين الجبريين اللذين يمثلان begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style الناتجين في الفرعين السابقين متكافئان، مبرراً إجابتي.

begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals fraction numerator s e c invisible function application space t over denominator t a n invisible function application space t end fraction equals x over y end style

المقداران الجبريان اللذان يمثلان  متكافئان، لأنه من نص السؤال:

x = sec t  و y = tan t ومنه فإن begin mathsize 20px style fraction numerator s e c invisible function application space t over denominator t a n invisible function application space t end fraction equals x over y end style

 

(46) أجد إحداثيات النقاط التي يكون عندها ميل المماس 2 .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator d y over denominator d x end fraction equals 2 not stretchy rightwards arrow x over y end cell cell equals 2 not stretchy rightwards arrow x equals 2 y end cell row cell x squared minus y squared equals 1 end cell cell not stretchy rightwards arrow left parenthesis 2 y right parenthesis squared minus y squared equals 1 end cell row blank cell not stretchy rightwards arrow y squared equals 1 third end cell row blank cell not stretchy rightwards arrow y equals plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction end cell row blank cell not stretchy rightwards arrow y equals fraction numerator 1 over denominator square root of 3 end fraction not stretchy rightwards arrow space x equals fraction numerator 2 over denominator square root of 3 end fraction comma space of 1em y equals negative fraction numerator 1 over denominator square root of 3 end fraction not stretchy rightwards arrow space x equals negative fraction numerator 2 over denominator square root of 3 end fraction end cell end table end style

النقاط التي يكون عندها ميل المماس 2 هي: begin mathsize 20px style left parenthesis negative fraction numerator 2 over denominator square root of 3 end fraction comma negative fraction numerator 1 over denominator square root of 3 end fraction right parenthesis space comma space left parenthesis fraction numerator 2 over denominator square root of 3 end fraction comma fraction numerator 1 over denominator square root of 3 end fraction right parenthesis end style

 

(47) تبرير: إذا مثل l أيّ مماس لمنحنى المعادلة: square root of size 20px x size 20px plus square root of size 20px y size 20px equals square root of size 20px k ، حيث k عدد حقيقي موجب، فأثبت أنّ مجموع المقطع x والمقطع y للمستقيم l يساوي k ، مبرراً إجابتي.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell square root of x plus square root of y equals square root of k end cell row blank cell fraction numerator 1 over denominator 2 square root of x end fraction plus fraction numerator fraction numerator d y over denominator d x end fraction over denominator 2 square root of y end fraction equals 0 space space not stretchy rightwards arrow space fraction numerator d y over denominator d x end fraction equals negative fraction numerator square root of y over denominator square root of x end fraction end cell end table end style

نفرض نقطة التماس هي: (x1 , y1) فيكون ميل المماس:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction vertical line subscript left parenthesis x subscript 1 comma y subscript 1 right parenthesis end subscript equals negative fraction numerator square root of y subscript 1 end root over denominator square root of x subscript 1 end root end fraction end style

معادلة المماس:

begin mathsize 20px style y minus y subscript 1 equals negative fraction numerator square root of y subscript 1 end root over denominator square root of x subscript 1 end root end fraction left parenthesis x minus x subscript 1 right parenthesis end style

المقطع x والمقطع y للمماس:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x equals 0 not stretchy rightwards arrow y minus y subscript 1 equals negative fraction numerator square root of y subscript 1 end root over denominator square root of x subscript 1 end root end fraction left parenthesis negative x subscript 1 right parenthesis not stretchy rightwards arrow y equals y subscript 1 plus square root of y subscript 1 end root square root of x subscript 1 end root end cell row blank cell y equals 0 not stretchy rightwards arrow y subscript 1 equals fraction numerator square root of y subscript 1 end root over denominator square root of x subscript 1 end root end fraction left parenthesis x minus x subscript 1 right parenthesis not stretchy rightwards arrow x equals x subscript 1 plus square root of y subscript 1 end root square root of x subscript 1 end root end cell end table end style

مجموع المقطعين:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell y subscript 1 plus square root of y subscript 1 end root square root of x subscript 1 end root plus x subscript 1 plus square root of y subscript 1 end root square root of x subscript 1 end root end cell cell equals y subscript 1 plus 2 square root of y subscript 1 end root square root of x subscript 1 end root plus x subscript 1 end cell row blank cell equals left parenthesis square root of y subscript 1 end root plus square root of x subscript 1 end root right parenthesis squared end cell row blank cell equals left parenthesis square root of k right parenthesis squared equals k end cell end table end style

 

(48) تحدّ: إذا كان مماس منحنى الاقتران: begin mathsize 20px style y equals x to the power of square root of x end exponent end style عند النقطة (4, 16) يقطع المحور x في النقطة B ، والمحور y في النقطة C ، فأجد مساحة begin mathsize 20px style straight triangle O B C end style ، حيث O نقطة الأصل.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals x to the power of square root of x end exponent end cell row blank cell l n invisible function application y equals l n invisible function application x to the power of square root of x end exponent end cell row blank cell l n invisible function application y equals square root of x l n invisible function application x end cell row blank cell fraction numerator fraction numerator d y over denominator d x end fraction over denominator y end fraction equals left parenthesis square root of x right parenthesis left parenthesis 1 over x right parenthesis plus left parenthesis l n invisible function application x right parenthesis left parenthesis fraction numerator 1 over denominator 2 square root of x end fraction right parenthesis not stretchy rightwards arrow fraction numerator d y over denominator d x end fraction equals y left parenthesis fraction numerator square root of x over denominator x end fraction plus fraction numerator l n invisible function application x over denominator 2 square root of x end fraction right parenthesis end cell row blank cell not stretchy rightwards arrow fraction numerator d y over denominator d x end fraction equals x to the power of square root of x end exponent left parenthesis fraction numerator 1 over denominator square root of x end fraction plus fraction numerator l n invisible function application x over denominator 2 square root of x end fraction right parenthesis end cell row blank cell equals fraction numerator 2 plus l n invisible function application x over denominator 2 square root of x end fraction left parenthesis x to the power of square root of x end exponent right parenthesis end cell end table end style

ميل المماس:

begin mathsize 20px style fraction numerator d y over denominator d x end fraction vertical line subscript left parenthesis 4 comma 16 right parenthesis end subscript equals fraction numerator 2 plus l n invisible function application space 4 over denominator 2 square root of 4 end fraction left parenthesis 16 right parenthesis equals 8 plus 4 l n invisible function application space 4 end style

معادلة المماس:

begin mathsize 20px style y minus 16 equals left parenthesis 8 plus 4 l n invisible function application 4 right parenthesis left parenthesis x minus 4 right parenthesis end style

المقطع x والمقطع y للمماس:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x equals 0 not stretchy rightwards arrow y minus 16 equals left parenthesis 8 plus 4 l n invisible function application space 4 right parenthesis left parenthesis negative 4 right parenthesis not stretchy rightwards arrow y equals negative 16 minus 16 l n invisible function application space 4 end cell row blank cell y equals 0 not stretchy rightwards arrow negative 16 equals left parenthesis 8 plus 4 l n invisible function application space 4 right parenthesis left parenthesis x minus 4 right parenthesis not stretchy rightwards arrow x equals fraction numerator 4 plus 4 l n invisible function application space 4 over denominator 2 plus l n invisible function application space 4 end fraction end cell end table end style

مساحة المثلث OBC بوحدة المساحة هي:

begin mathsize 20px style A equals 1 half cross times fraction numerator 4 plus 4 l n invisible function application space 4 over denominator 2 plus l n invisible function application space 4 end fraction cross times vertical line minus 16 minus 16 l n invisible function application space 4 vertical line equals fraction numerator 32 left parenthesis 1 plus l n invisible function application space 4 right parenthesis squared over denominator 2 plus l n invisible function application space 4 end fraction end style

إعداد : شبكة منهاجي التعليمية

19 / 01 / 2023

النقاشات