حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل

أتدرب وأحل المسائل

مشتقتا الضرب والقسمة والمشتقات العليا

أجد مشتقة كل اقتران ممّا يأتي:

(1) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator x cubed over denominator 2 x minus 1 end fraction end style

begin mathsize 20px style table attributes columnalign left left columnspacing 0em 2em end attributes row blank cell f left parenthesis x right parenthesis equals fraction numerator x cubed over denominator 2 x minus 1 end fraction end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals fraction numerator left parenthesis 2 x minus 1 right parenthesis left parenthesis 3 x squared right parenthesis minus left parenthesis x cubed right parenthesis left parenthesis 2 right parenthesis over denominator left parenthesis 2 x minus 1 right parenthesis squared end fraction equals fraction numerator 4 x cubed minus 3 x squared over denominator left parenthesis 2 x minus 1 right parenthesis squared end fraction end cell end table end style

(2) begin mathsize 20px style f left parenthesis x right parenthesis equals x cubed sec invisible function application space x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals x cubed s e c invisible function application x end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals left parenthesis x cubed right parenthesis left parenthesis s e c invisible function application x space t a n invisible function application x right parenthesis plus left parenthesis s e c invisible function application x right parenthesis left parenthesis 3 x squared right parenthesis end cell row blank cell equals x cubed s e c invisible function application x space t a n invisible function application x plus 3 x squared s e c invisible function application x end cell end table end style

(3) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator x plus 1 over denominator cos invisible function application space x end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals fraction numerator x plus 1 over denominator c o s invisible function application x end fraction end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals fraction numerator left parenthesis c o s invisible function application x right parenthesis left parenthesis 1 right parenthesis minus left parenthesis x plus 1 right parenthesis left parenthesis negative s i n invisible function application x right parenthesis over denominator left parenthesis c o s invisible function application x right parenthesis squared end fraction equals fraction numerator c o s invisible function application x plus x s i n invisible function application x plus s i n invisible function application x over denominator c o s squared invisible function application x end fraction end cell end table end style

(4) begin mathsize 20px style f left parenthesis x right parenthesis equals e to the power of x left parenthesis tan invisible function application space x minus x right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals e to the power of x left parenthesis t a n invisible function application x minus x right parenthesis end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals left parenthesis e to the power of x right parenthesis left parenthesis s e c squared invisible function application x minus 1 right parenthesis plus left parenthesis t a n invisible function application x minus x right parenthesis left parenthesis e to the power of x right parenthesis end cell row blank cell equals e to the power of x t a n squared invisible function application x plus e to the power of x t a n invisible function application x minus x e to the power of x end cell end table end style

(5) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator sin invisible function application space x plus cos invisible function application space x over denominator e to the power of x end fraction end style

begin mathsize 20px style table attributes columnalign left left columnspacing 0em 2em end attributes row blank cell f left parenthesis x right parenthesis equals fraction numerator s i n invisible function application x plus c o s invisible function application x over denominator e to the power of x end fraction end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals fraction numerator left parenthesis e to the power of x right parenthesis left parenthesis c o s invisible function application x minus s i n invisible function application x right parenthesis minus left parenthesis s i n invisible function application x plus c o s invisible function application x right parenthesis left parenthesis e to the power of x right parenthesis over denominator left parenthesis e to the power of x right parenthesis squared end fraction equals fraction numerator negative 2 s i n invisible function application x over denominator e to the power of x end fraction end cell end table end style

(6) begin mathsize 20px style f left parenthesis x right parenthesis equals x cubed sin invisible function application space x plus x squared cos invisible function application space x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals x cubed s i n invisible function application space x plus x squared c o s invisible function application space x end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals left parenthesis x cubed right parenthesis left parenthesis c o s invisible function application space x right parenthesis plus left parenthesis s i n invisible function application space x right parenthesis left parenthesis 3 x squared right parenthesis plus left parenthesis x squared right parenthesis left parenthesis negative s i n invisible function application space x right parenthesis plus left parenthesis c o s invisible function application space x right parenthesis left parenthesis 2 x right parenthesis end cell row blank cell equals x cubed c o s invisible function application space x plus 2 x squared s i n invisible function application space x plus 2 x c o s invisible function application space x end cell end table end style

(7) begin mathsize 20px style f left parenthesis x right parenthesis equals cube root of x left parenthesis square root of x plus 3 right parenthesis end style

begin mathsize 20px style table attributes columnalign left left columnspacing 0em 2em end attributes row blank cell f left parenthesis x right parenthesis equals cube root of x left parenthesis square root of x plus 3 right parenthesis equals x to the power of 5 over 6 end exponent plus 3 x to the power of 1 third end exponent end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals 5 over 6 x to the power of negative 1 over 6 end exponent plus x to the power of negative 2 over 3 end exponent equals 5 over 6 to the power of 6 plus fraction numerator 1 over denominator cube root of x squared end root end fraction end cell end table end style

(8) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator 1 plus sec invisible function application space x over denominator 1 minus sec invisible function application space x end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals fraction numerator 1 plus s e c invisible function application x over denominator 1 minus s e c invisible function application space x end fraction end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals fraction numerator left parenthesis 1 minus s e c invisible function application space x right parenthesis left parenthesis s e c invisible function application space x space t a n invisible function application space x right parenthesis minus left parenthesis 1 plus s e c invisible function application space x right parenthesis left parenthesis negative s e c invisible function application space x space t a n invisible function application space x right parenthesis over denominator left parenthesis 1 minus s e c invisible function application space x right parenthesis squared end fraction end cell row blank cell equals fraction numerator 2 s e c invisible function application space x space t a n invisible function application space x over denominator left parenthesis 1 minus s e c invisible function application space x right parenthesis squared end fraction end cell end table end style

(9) begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator 2 minus 1 over x over denominator x minus 3 end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals fraction numerator 2 minus 1 over x over denominator x minus 3 end fraction equals fraction numerator 2 x minus 1 over denominator x squared minus 3 x end fraction end cell row blank cell f to the power of straight prime left parenthesis x right parenthesis equals fraction numerator left parenthesis x squared minus 3 x right parenthesis left parenthesis 2 right parenthesis minus left parenthesis 2 x minus 1 right parenthesis left parenthesis 2 x minus 3 right parenthesis over denominator left parenthesis x squared minus 3 x right parenthesis squared end fraction equals fraction numerator negative 2 x squared plus 2 x minus 3 over denominator left parenthesis x squared minus 3 x right parenthesis squared end fraction end cell end table end style

(10) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(11) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

إذا كان f(x) و g(x) اقترانين قابلين للاشتقاق عندما x = 0 ، وكان:

 begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style فأجد كلاً ممّا يأتي:

(12) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(13) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(14) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

أجد المشتقة الثانية لكل اقتران ممّا يأتي عند قيمة x المعطاة:

(15) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(16) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(17) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

أجد معادلة المماس لكل اقتران ممّا يأتي عند النقطة المعطاة:

(18) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

ميل المماس عند النقطة (0, begin mathsize 20px style 1 half end style) هو: begin mathsize 20px style 1 fourth end style f (0) =

معادلة المماس هي:

          begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(19) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

ميل المماس عند النقطة (0, 1) هو:

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

معادلة المماس هي:

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

أثبت صحّة كلّ ممّا يأتي معتمداً أنّ begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style :

(20) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(21) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(22) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

ألاحظ المشتقة المعطاة في كلّ ممّا يأتي، ثم أجد المشتقة العليا المطلوبة:

(23) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(24) begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(25) begin mathsize 20px style f to the power of left parenthesis 4 right parenthesis end exponent left parenthesis x right parenthesis equals 2 x plus 1 comma f to the power of left parenthesis 6 right parenthesis end exponent left parenthesis x right parenthesis end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f to the power of left parenthesis 4 right parenthesis end exponent left parenthesis x right parenthesis equals 2 x plus 1 end cell row blank cell f to the power of left parenthesis 5 right parenthesis end exponent left parenthesis x right parenthesis equals 2 end cell row blank cell f to the power of left parenthesis 6 right parenthesis end exponent left parenthesis x right parenthesis equals 0 end cell end table end style

 

نباتات هجينة(26) نباتات هجينة: وجد فريق بحث زراعي أنّه يمكن التعبير عن ارتفاع نبتة هجينة من نبات تبّاع الشمس h بالأمتار، باستعمال الاقتران: h(t) = begin mathsize 20px style fraction numerator 3 t squared over denominator 4 plus t squared end fraction end style ، حيث t الزمن بالأشهر بعد زراعة البذور. أجد معدّل تغير ارتفاع النبتة بالنسبة إلى الزمن.

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

إذا كان الاقتران: y = ex sin x ، فأجيب عن السؤالين الآتيين تباعاً:

(27) أجد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style ، و begin mathsize 20px style fraction numerator d squared y over denominator d x squared end fraction end style .

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(28) أثبت أنّ begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

أقمار صناعية: عندما ترصد الأقمار الصناعية الأرض، فإنه يُمكنها مسح جزء فقط من سطح الأرض. وبعض الأقمار الصناعية تحوي مُستشعرات لقياس الزاوية Ɵ (بالراديان) المبينة في الشكل المجاور. إذا كان h يمثل المسافة بين القمر الصناعي وسطح الأرض بالكيلومترات، و r يُمثل نصف قطر الأرض بالكيلومترات، فأجيب عن السؤالين الآتيين تباعاً:

(29) أثبت أنّ h = r(csc Ɵ - 1) .

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(30) أجد معدل تغير h بالنسبة إلى Ɵ عندما begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style (أفترض أن r = 6371 km).

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

(31) إذا كان: begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style ، فأثبت أنّ begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style .

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

 

يبين الشكل المجاور منحنيي الاقتراني: F(x) ، و G(x) .

إذا كان: P(x) = F(x)G(x) ، وكان: begin mathsize 20px style fraction numerator F italic left parenthesis x italic right parenthesis over denominator G italic left parenthesis x italic right parenthesis end fraction end styleQ(x) =  ، فأجد كلاً ممّا يأتي:

(32) P(2)

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(2) G ميل المستقيم الذي يمر بالنقطتين (2, 2) و (4, 3) ويساوي 

(2) F ميل المماس الأفقي، ويساوي صفراً.

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

(33) Q(7)

begin mathsize 20px style left parenthesis left parenthesis 3.5 minus 7 right parenthesis MeV right parenthesis end style

إعداد : شبكة منهاجي التعليمية

21 / 10 / 2022

النقاشات