حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

التكامل غير المحدود

الاقتران الأصلي

أتحقق من فهمي صفحة (9):

أجد اقتراناً أصلياً لكلّ من الاقترانين الآتيين:

(a) f(x) = 5x4

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals 5 x to the power of 4 end cell row blank cell G left parenthesis x right parenthesis equals x to the power of 5 plus C end cell end table end style

(b) f(x) = -9x-10

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals negative 9 x to the power of negative 10 end exponent end cell row blank cell G left parenthesis x right parenthesis equals x to the power of negative 9 end exponent plus C end cell end table end style


التكامل غير المحدود

أتحقق من فهمي صفحة (11):

أجد كلاً من التكاملات الآتية:

(a) begin mathsize 20px style integral 6 d x end style

begin mathsize 20px style integral 6 space d x equals 6 x plus C end style

(b) begin mathsize 20px style integral x to the power of 8 space end exponent d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral x to the power of 8 space d x end cell cell equals fraction numerator 1 over denominator 8 plus 1 end fraction x to the power of 8 plus 1 end exponent plus C end cell row blank cell equals 1 over 9 x to the power of 9 plus C end cell end table end style

(c) begin mathsize 20px style integral cube root of x space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral cube root of x space d x end cell cell equals integral x to the power of 1 third end exponent d x end cell row blank cell equals fraction numerator 1 over denominator 1 third plus 1 end fraction x to the power of 1 third plus 1 end exponent plus C end cell row blank cell equals 3 over 4 x to the power of 4 over 3 end exponent plus C end cell row blank cell equals 3 over 4 cube root of x to the power of 4 end root plus C end cell end table end style

(d) begin mathsize 20px style integral 1 over x to the power of 5 space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral 1 over x to the power of 5 space d x end cell cell equals integral x to the power of negative 5 end exponent space d x end cell row blank cell equals negative 1 fourth x to the power of negative 4 end exponent plus C end cell row blank cell equals negative fraction numerator 1 over denominator 4 x to the power of 4 end fraction plus C end cell end table end style


خصائص التكامل غير المحدود

أتحقق من فهمي صفحة (12):

أجد كلاً من التكاملين الآتيين:

(a) begin mathsize 20px style integral left parenthesis x cubed minus 2 x to the power of 5 divided by 3 end exponent right parenthesis space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis x cubed minus 2 x to the power of 5 over 3 end exponent right parenthesis space d x end cell cell equals integral x cubed space d x minus 2 integral x to the power of 5 over 3 end exponent d x end cell row blank cell equals 1 fourth x to the power of 4 minus 2 left parenthesis 3 over 8 x to the power of 8 over 3 end exponent right parenthesis plus C end cell row blank cell equals 1 fourth x to the power of 4 minus 3 over 4 cube root of x to the power of 8 end root plus C end cell end table end style

(b) begin mathsize 20px style integral left parenthesis x cubed minus 2 x to the power of 5 divided by 3 end exponent right parenthesis space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis 3 x squared minus fraction numerator 6 over denominator fifth root of x end fraction right parenthesis space d x end cell cell equals 3 integral x squared space d x minus 6 integral fraction numerator 1 over denominator fifth root of x end fraction space d x end cell row blank cell equals 3 integral x to the power of 2 space end exponent d x minus 6 integral x to the power of negative fraction numerator 1 over denominator 5 space end fraction end exponent d x end cell row blank cell equals x cubed minus 6 left parenthesis 5 over 4 x to the power of 4 over 5 end exponent right parenthesis plus C end cell row blank cell equals x cubed minus 15 over 2 fifth root of x to the power of 4 end root plus C end cell end table end style

 

أتحقق من فهمي صفحة (13):

أجد كلاً من التكاملات الآتية:

(a) begin mathsize 20px style integral fraction numerator x to the power of 4 minus 8 x cubed over denominator x squared end fraction space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator x to the power of 4 minus 8 x cubed over denominator x squared end fraction space d x end cell cell equals integral left parenthesis x to the power of 4 over x squared minus fraction numerator 8 x cubed over denominator x squared end fraction right parenthesis space d x end cell row blank cell equals integral left parenthesis x squared minus 8 x right parenthesis space d x end cell row blank cell equals 1 third x cubed minus 4 x squared plus C end cell end table end style

(b) begin mathsize 20px style integral left parenthesis 3 x plus 2 right parenthesis left parenthesis x minus 1 right parenthesis space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis 3 x plus 2 right parenthesis left parenthesis x minus 1 right parenthesis space d x end cell cell equals integral left parenthesis 3 x squared minus 3 x plus 2 x minus 2 right parenthesis space d x end cell row blank cell equals integral left parenthesis 3 x squared minus x minus 2 right parenthesis space d x end cell row blank cell equals x cubed minus 1 half x squared minus 2 x plus C end cell end table end style

(c) begin mathsize 20px style integral x left parenthesis x cubed minus 7 right parenthesis space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral x left parenthesis x cubed minus 7 right parenthesis space d x end cell cell equals integral left parenthesis x to the power of 4 minus 7 x right parenthesis space d x end cell row blank cell equals 1 fifth x to the power of 5 minus 7 over 2 x squared plus C end cell end table end style

إعداد : شبكة منهاجي التعليمية

09 / 02 / 2023

النقاشات