حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

تكامل اقترانات خاصة

تكامل الاقترانات الأسيّة

أتحقق من فهمي صفحة 10

أجد كلاً من التكاملات الآتية:

(a) begin mathsize 20px style integral left parenthesis 5 x squared minus 3 e to the power of 7 x end exponent right parenthesis space d x end style

begin mathsize 20px style integral left parenthesis 5 x squared minus 3 e to the power of 7 x end exponent right parenthesis space d x equals 5 over 3 x cubed minus 3 over 7 e to the power of 7 x end exponent plus C end style

(b) begin mathsize 20px style integral subscript 0 superscript ln invisible function application 3 end superscript 8 e to the power of 4 x end exponent space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 0 superscript ln invisible function application 3 end superscript 8 e to the power of 4 x end exponent space d x equals 8 over 4 e to the power of 4 x end exponent vertical line subscript 0 superscript ln invisible function application 3 end superscript equals 2 left parenthesis e to the power of 4 ln invisible function application 3 end exponent minus e to the power of 0 right parenthesis end cell cell equals 2 left parenthesis e to the power of ln invisible function application 3 to the power of 4 end exponent minus e to the power of 0 right parenthesis end cell row blank cell equals 2 left parenthesis 81 minus 1 right parenthesis equals 160 end cell end table end style

(c) begin mathsize 20px style integral square root of e to the power of 1 minus x end exponent end root space d x end style

begin mathsize 20px style integral square root of e to the power of 1 minus x end exponent end root space d x equals integral left parenthesis e to the power of 1 minus x end exponent right parenthesis to the power of 1 divided by 2 space end exponent d x equals integral e to the power of left parenthesis 1 minus x right parenthesis divided by 2 end exponent space d x equals negative 2 e to the power of left parenthesis 1 minus x right parenthesis divided by 2 end exponent plus C end style

(d) begin mathsize 20px style integral left parenthesis 3 to the power of x plus 2 square root of x right parenthesis space d x end style

begin mathsize 20px style integral left parenthesis 3 to the power of x plus 2 square root of x right parenthesis space d x equals fraction numerator 3 to the power of x over denominator ln invisible function application 3 end fraction plus 2 left parenthesis 2 over 3 x to the power of 3 over 2 end exponent right parenthesis plus C equals fraction numerator 3 to the power of x over denominator ln invisible function application 3 end fraction plus 4 over 3 x to the power of 3 over 2 end exponent plus C end style


تكامل الاقترانات المثلثية

أتحقق من فهمي صفحة 12

أجد كلاً من التكاملات الآتية:

(a) begin mathsize 20px style integral cos invisible function application space left parenthesis 3 x minus pi right parenthesis space d x end style

begin mathsize 20px style integral c o s invisible function application space left parenthesis 3 x minus pi right parenthesis space d x equals 1 third s i n invisible function application space left parenthesis 3 x minus pi right parenthesis plus C end style

(b) begin mathsize 20px style integral left parenthesis csc squared invisible function application space left parenthesis 5 x right parenthesis plus e to the power of 2 x end exponent right parenthesis space d x end style

begin mathsize 20px style integral left parenthesis c s c squared invisible function application space left parenthesis 5 x right parenthesis plus e to the power of 2 x end exponent right parenthesis space d x equals negative 1 fifth c o t invisible function application space 5 x plus 1 half e to the power of 2 x end exponent plus C end style

(c) begin mathsize 20px style integral subscript 0 superscript pi divided by 3 end superscript left parenthesis sin invisible function application space 2 x minus cos invisible function application space 4 x right parenthesis space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript 0 superscript pi over 3 end superscript left parenthesis sin invisible function application space 2 x minus cos invisible function application space 4 x right parenthesis space d x equals left parenthesis negative 1 half cos invisible function application space 2 x minus 1 fourth sin invisible function application space 4 x right parenthesis vertical line subscript 0 superscript pi over 3 end superscript end cell row blank cell equals left parenthesis negative 1 half cos invisible function application space fraction numerator 2 pi over denominator 3 end fraction minus 1 fourth sin invisible function application space fraction numerator 4 pi over denominator 3 end fraction right parenthesis minus left parenthesis negative 1 half cos invisible function application space 0 minus 1 fourth sin invisible function application space 0 right parenthesis end cell row blank cell equals left parenthesis negative 1 half left parenthesis negative 1 half right parenthesis minus 1 fourth left parenthesis fraction numerator negative square root of 3 over denominator 2 end fraction right parenthesis right parenthesis minus left parenthesis negative 1 half minus 0 right parenthesis end cell row blank cell equals fraction numerator 6 plus square root of 3 over denominator 8 end fraction end cell end table end style


المتطابقات المثلثية والتكامل

أتحقق من فهمي صفحة 14

أجد كلاً من التكاملات الآتية:

(a) begin mathsize 20px style integral cos to the power of 4 invisible function application space x space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral c o s to the power of 4 invisible function application space x space d x end cell row blank cell c o s to the power of 4 invisible function application space x equals left parenthesis c o s squared invisible function application space x right parenthesis squared equals left parenthesis fraction numerator 1 plus c o s invisible function application space 2 x over denominator 2 end fraction right parenthesis squared end cell row blank cell equals 1 fourth left parenthesis 1 plus 2 c o s invisible function application space 2 x plus c o s squared invisible function application space 2 x right parenthesis end cell row blank cell equals 1 fourth left parenthesis 1 plus 2 c o s invisible function application space 2 x plus fraction numerator 1 plus c o s invisible function application space 4 x over denominator 2 end fraction right parenthesis end cell row blank cell equals 1 fourth plus 1 half c o s invisible function application space 2 x plus 1 over 8 plus 1 over 8 c o s invisible function application space 4 x end cell row blank cell equals 3 over 8 plus 1 half c o s invisible function application space 2 x plus 1 over 8 c o s invisible function application space 4 x end cell row blank cell integral c o s to the power of 4 invisible function application space x space d x equals integral left parenthesis 3 over 8 plus 1 half c o s invisible function application space 2 x plus 1 over 8 c o s invisible function application space 4 x right parenthesis d x end cell row blank cell equals 3 over 8 x plus 1 fourth s i n invisible function application space 2 x plus 1 over 32 s i n invisible function application space 4 x plus C end cell end table end style

(b) begin mathsize 20px style integral subscript 0 superscript pi divided by 6 end superscript sin invisible function application space 3 x sin invisible function application space x space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 0 superscript pi over 6 end superscript sin invisible function application 3 x sin invisible function application space x space d x end cell cell equals integral subscript 0 superscript pi over 6 end superscript 1 half left parenthesis cos invisible function application space left parenthesis 3 x minus x right parenthesis minus cos invisible function application space left parenthesis 3 x plus x right parenthesis right parenthesis space d x end cell row blank cell equals 1 half integral subscript 0 superscript pi over 6 end superscript left parenthesis cos invisible function application space 2 x minus cos invisible function application space 4 x right parenthesis space d x end cell row blank cell equals left parenthesis 1 fourth sin invisible function application space 2 x minus 1 over 8 sin invisible function application space 4 x right parenthesis vertical line subscript 0 superscript pi over 6 end superscript end cell row blank cell equals left parenthesis 1 fourth sin invisible function application space fraction numerator 2 pi over denominator 6 end fraction minus 1 over 8 sin invisible function application space fraction numerator 4 pi over denominator 6 end fraction right parenthesis minus left parenthesis 0 minus 0 right parenthesis equals fraction numerator square root of 3 over denominator 8 end fraction minus fraction numerator square root of 3 over denominator 16 end fraction equals fraction numerator square root of 3 over denominator 16 end fraction end cell end table end style

(c) begin mathsize 20px style integral fraction numerator d x over denominator 1 plus cos invisible function application space x end fraction end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator d x over denominator 1 plus c o s invisible function application space x end fraction end cell cell equals integral left parenthesis fraction numerator 1 over denominator 1 plus c o s invisible function application space x end fraction cross times fraction numerator 1 minus c o s invisible function application space x over denominator 1 minus c o s invisible function application space x end fraction right parenthesis d x end cell row blank cell equals integral fraction numerator 1 minus c o s invisible function application space x over denominator s i n squared invisible function application space x end fraction space d x end cell row blank cell equals integral left parenthesis c s c squared invisible function application space x minus c o t invisible function application space x c s c invisible function application space x right parenthesis space d x end cell row blank cell equals negative c o t invisible function application space x plus c s c invisible function application space x plus C end cell end table end style


تكاملات ينتج منها اقتران لوغاريتمي طبيعي

أتحقق من فهمي صفحة 16

أجد كلاً من التكاملات الآتية:

(a) begin mathsize 20px style integral left parenthesis sin invisible function application space x minus 5 over x right parenthesis space d x end style

begin mathsize 20px style integral left parenthesis s i n invisible function application space x minus 5 over x right parenthesis space d x equals negative c o s invisible function application space x minus 5 l n invisible function application space vertical line x vertical line plus C end style

(b) begin mathsize 20px style integral fraction numerator 5 over denominator 3 x plus 2 end fraction space d x end style

begin mathsize 20px style integral fraction numerator 5 over denominator 3 x plus 2 end fraction space d x equals 5 over 3 integral fraction numerator 3 over denominator 3 x plus 2 end fraction space d x equals 5 over 3 l n invisible function application space vertical line 3 x plus 2 vertical line plus C end style

(c) begin mathsize 20px style integral fraction numerator x squared minus 7 x plus 2 over denominator x squared end fraction space d x end style

begin mathsize 20px style integral fraction numerator x squared minus 7 x plus 2 over denominator x squared end fraction space d x equals integral left parenthesis 1 minus 7 over x plus 2 x to the power of negative 2 end exponent right parenthesis space d x equals x minus 7 l n invisible function application space vertical line x vertical line minus 2 x to the power of negative 1 end exponent plus C end style

(d) begin mathsize 20px style integral fraction numerator 2 x plus 3 over denominator x squared plus 3 x end fraction space d x end style

begin mathsize 20px style integral fraction numerator 2 x plus 3 over denominator x squared plus 3 x end fraction space d x equals l n invisible function application space vertical line x squared plus 3 x vertical line plus C end style

(e) begin mathsize 20px style integral fraction numerator sin invisible function application space 2 x over denominator 1 plus cos invisible function application space 2 x end fraction space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator s i n invisible function application space 2 x over denominator 1 plus c o s invisible function application space 2 x end fraction space d x end cell cell equals negative 1 half integral fraction numerator negative 2 s i n invisible function application space 2 x over denominator 1 plus c o s invisible function application space 2 x end fraction space d x end cell row blank cell equals negative 1 half l n invisible function application space vertical line 1 plus c o s invisible function application space 2 x vertical line plus C end cell row blank cell equals negative 1 half l n invisible function application space left parenthesis 1 plus c o s invisible function application space 2 x right parenthesis plus C end cell end table end style

(f) begin mathsize 20px style integral cot invisible function application space x space d x end style

begin mathsize 20px style integral c o t invisible function application space x space d x equals integral fraction numerator c o s invisible function application space x over denominator s i n invisible function application space x end fraction space d x equals l n invisible function application space vertical line s i n invisible function application space x vertical line plus C end style

(g) begin mathsize 20px style integral fraction numerator e to the power of x over denominator e to the power of x plus 7 end fraction space d x end style

begin mathsize 20px style integral fraction numerator e to the power of x over denominator e to the power of x plus 7 end fraction space d x equals l n invisible function application space vertical line e to the power of x plus 7 vertical line plus C equals l n invisible function application space left parenthesis e to the power of x plus 7 right parenthesis plus C end style

(h) begin mathsize 20px style integral csc invisible function application space x space d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator d x over denominator 1 plus c o s invisible function application space x end fraction end cell cell equals integral left parenthesis fraction numerator 1 over denominator 1 plus c o s invisible function application space x end fraction cross times fraction numerator 1 minus c o s invisible function application space x over denominator 1 minus c o s invisible function application space x end fraction right parenthesis d x end cell row blank cell equals integral fraction numerator 1 minus c o s invisible function application space x over denominator s i n squared invisible function application space x end fraction space d x end cell row blank cell equals integral left parenthesis c s c squared invisible function application space x minus c o t invisible function application space x c s c invisible function application space x right parenthesis space d x end cell row blank cell equals negative c o t invisible function application space x plus c s c invisible function application space x plus C end cell end table end style

 

أتحقق من فهمي صفحة 17

أجد: begin mathsize 20px style integral fraction numerator x squared plus x plus 1 over denominator x plus 1 end fraction space d x end style

begin mathsize 20px style integral fraction numerator x squared plus x plus 1 over denominator x plus 1 end fraction space d x equals integral left parenthesis x plus fraction numerator 1 over denominator x plus 1 end fraction right parenthesis space d x equals 1 half x squared plus l n invisible function application space vertical line x plus 1 vertical line plus C end style


تكاملات الاقترانات المتشعبة

أتحقق من فهمي صفحة 19

(a) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell 1 plus x end cell cell comma x less than 1 end cell row cell 2 x end cell cell comma x greater or equal than 1 end cell end table end style ، فأجد قيمة: begin mathsize 20px style integral subscript negative 1 end subscript superscript 3 f left parenthesis x right parenthesis d x end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript negative 1 end subscript superscript 3 f left parenthesis x right parenthesis space d x end cell cell equals integral subscript negative 1 end subscript superscript 1 left parenthesis 1 plus x right parenthesis space d x plus integral subscript 1 superscript 3 2 x space d x end cell row blank cell equals left parenthesis x plus 1 half x squared right parenthesis vertical line subscript negative 1 end subscript superscript 1 plus x squared vertical line subscript 1 superscript 3 end cell row blank cell equals left parenthesis 1 plus 1 half right parenthesis minus left parenthesis negative 1 plus 1 half right parenthesis plus 9 minus 1 equals 10 end cell end table end style

(b) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line 1 minus x vertical line end style ، فأجد قيمة: begin mathsize 20px style integral subscript negative 2 end subscript superscript 2 f left parenthesis x right parenthesis d x end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell 1 minus x comma end cell cell x less or equal than 1 end cell row cell x minus 1 comma end cell cell x greater than 1 end cell end table end cell row blank cell table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript negative 2 end subscript superscript 2 f left parenthesis x right parenthesis space d x end cell cell equals integral subscript negative 2 end subscript superscript 1 left parenthesis 1 minus x right parenthesis space d x plus integral subscript 1 superscript 2 left parenthesis x minus 1 right parenthesis space d x end cell row blank cell equals left parenthesis x minus 1 half x squared right parenthesis vertical line subscript negative 2 end subscript superscript 1 plus left parenthesis 1 half x squared minus x right parenthesis vertical line subscript 1 superscript 2 end cell row blank cell equals left parenthesis 1 minus 1 half right parenthesis minus left parenthesis negative 2 minus 2 right parenthesis plus left parenthesis 2 minus 2 right parenthesis minus left parenthesis 1 half minus 1 right parenthesis equals 5 end cell end table end cell end table end style

(c) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line x squared minus 1 vertical line end style ، فأجد قيمة: begin mathsize 20px style integral subscript negative 4 end subscript superscript 0 f left parenthesis x right parenthesis d x end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign center columnspacing 1em end attributes row cell x squared minus 1 comma x less than negative 1 end cell row cell 1 minus x squared comma negative 1 less or equal than x less or equal than 1 end cell row cell x squared minus 1 comma x greater than 1 end cell end table end cell row blank cell integral subscript negative 4 end subscript superscript 0 f left parenthesis x right parenthesis space d x equals integral subscript negative 4 end subscript superscript negative 1 end superscript left parenthesis x squared minus 1 right parenthesis space d x plus integral subscript negative 1 end subscript superscript 0 left parenthesis 1 minus x squared right parenthesis space d x end cell row blank cell equals left parenthesis 1 third x cubed minus x right parenthesis vertical line subscript negative 4 end subscript superscript negative 1 end superscript plus left parenthesis x minus 1 third x cubed right parenthesis vertical line subscript negative 1 end subscript superscript 0 end cell row blank cell equals left parenthesis negative 1 third plus 1 right parenthesis minus left parenthesis negative 64 over 3 plus 4 right parenthesis plus left parenthesis 0 minus 0 right parenthesis minus left parenthesis negative 1 plus 1 third right parenthesis end cell row blank cell equals 56 over 3 end cell end table end style


تطبيقات التكامل: الشرط الأولي

أتحقق من فهمي صفحة 20

تلوث: تسرب نفط من ناقلة بحرية، مكوناً بقعة دائرية الشكل على سطح الماء، نصف قطرها R(t) قدماً بعد t دقيقة من بدء التسرب. إذا كان نصف قطر الدائرة يزداد بمعدل: begin mathsize 20px style R to the power of straight prime left parenthesis t right parenthesis equals fraction numerator 21 over denominator 0.07 t plus 5 end fraction end style ، فأجد R(t) ، علماً بأن R(0) = 0 .

Error converting from MathML to accessible text.


تطبيقات التكامل: الحركة في مسار مستقيم

أتحقق من فهمي صفحة 23

يتحرك جُسيم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: v(t) = 3 cos t ، حيث t الزمن بالثواني، و v سرعته المتجهة بالمتر لكل ثانية:

(a) إذا بدأ الجُسيم حركته من نقطة الأصل، فأجد موقع الجُسيم بعد begin mathsize 20px style straight pi over 6 end style ثانية من بدء الحركة.

Error converting from MathML to accessible text.

(b) أجد إزاحة الجسيم في الفترة [0, 2π] .

begin mathsize 20px style s left parenthesis 2 pi right parenthesis minus s left parenthesis 0 right parenthesis equals 3 s i n invisible function application space left parenthesis 2 pi right parenthesis minus 3 s i n invisible function application space left parenthesis 0 right parenthesis equals 0 space straight m end style

(c) أجد المسافة الكلية التي قطعها الجسيم في الفترة [0, 2π] .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell vertical line v left parenthesis t right parenthesis vertical line equals vertical line 3 c o s invisible function application space t vertical line equals left curly bracket table attributes columnalign center columnspacing 1em end attributes row cell 3 c o s invisible function application space t comma 0 less or equal than t less than pi over 2 end cell row cell negative 3 c o s invisible function application space t comma pi over 2 less or equal than t less or equal than fraction numerator 3 pi over denominator 2 end fraction end cell row cell 3 c o s invisible function application space t comma fraction numerator 3 pi over denominator 2 end fraction less than t less or equal than 2 pi end cell end table end cell row blank cell integral subscript 0 superscript 2 pi end superscript vertical line v left parenthesis t right parenthesis vertical line space d x equals integral subscript 0 superscript pi over 2 end superscript 3 c o s invisible function application space t space d x plus integral subscript pi over 2 end subscript superscript fraction numerator 3 pi over denominator 2 end fraction end superscript minus 3 c o s invisible function application space t space d x plus integral subscript fraction numerator 3 pi over denominator 2 end fraction end subscript superscript 2 pi end superscript 3 c o s invisible function application space t space d x end cell row blank cell equals 3 s i n invisible function application space t vertical line subscript 0 superscript pi over 2 end superscript minus 3 s i n invisible function application space t vertical line subscript fraction numerator pi pi over denominator 2 end fraction end subscript superscript fraction numerator 3 pi over denominator 2 end fraction end superscript plus 3 s i n invisible function application t space vertical line subscript fraction numerator 3 pi over denominator 2 end fraction end subscript superscript 2 pi end superscript end cell row blank cell equals left parenthesis 3 minus 0 right parenthesis minus left parenthesis negative 3 minus 3 right parenthesis plus left parenthesis 0 minus left parenthesis negative 3 right parenthesis right parenthesis equals 12 m end cell end table end style

إعداد : شبكة منهاجي التعليمية

18 / 02 / 2024

النقاشات