حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل

أتدرب وأحل المسائل

تكامل اقترانات خاصة

أجد كلاً من التكاملات الآتية:

begin mathsize 20px style integral left parenthesis 1 half e to the power of x plus 3 x right parenthesis d x end style (1)

begin mathsize 20px style integral left parenthesis 1 half e to the power of x plus 3 x right parenthesis d x equals 1 half e to the power of x plus 3 over 2 x squared plus C end style

begin mathsize 20px style integral left parenthesis fraction numerator x squared plus 2 x plus 1 over denominator x squared end fraction right parenthesis d x end style (2)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator x squared plus 2 x plus 1 over denominator x squared end fraction d x end cell cell equals integral left parenthesis x squared over x squared plus fraction numerator 2 x over denominator x squared end fraction plus 1 over x squared right parenthesis d x end cell row blank cell equals integral left parenthesis 1 plus 2 over x plus x to the power of negative 2 end exponent right parenthesis d x equals x plus 2 ln invisible function application vertical line x vertical line minus x to the power of negative 1 end exponent plus C end cell end table end style

begin mathsize 20px style integral left parenthesis e to the power of x plus 1 right parenthesis squared d x end style (3)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis e to the power of x plus 1 right parenthesis squared d x end cell cell equals integral left parenthesis e to the power of 2 x end exponent plus 2 e to the power of x plus 1 right parenthesis d x end cell row blank cell equals 1 half e to the power of 2 x end exponent plus 2 e to the power of x plus x plus C end cell end table end style

begin mathsize 20px style integral 1 over x left parenthesis x plus 2 right parenthesis d x end style (4)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis 4 over x cubed plus 5 over x right parenthesis d x end cell cell equals integral left parenthesis 4 x to the power of negative 3 end exponent plus 5 over x right parenthesis d x end cell row blank cell equals negative 2 x to the power of negative 2 end exponent plus 5 ln invisible function application vertical line x vertical line plus C end cell end table end style

begin mathsize 20px style integral left parenthesis 4 over x cubed plus 5 over x right parenthesis d x end style (5)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis 4 over x cubed plus 5 over x right parenthesis d x end cell cell equals integral left parenthesis 4 x to the power of negative 3 end exponent plus 5 over x right parenthesis d x end cell row blank cell equals negative 2 x to the power of negative 2 end exponent plus 5 ln invisible function application vertical line x vertical line plus C end cell end table end style

begin mathsize 20px style integral left parenthesis square root of x plus 3 e to the power of 6 x end exponent minus 7 over x right parenthesis d x end style (6)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral left parenthesis square root of x plus 3 e to the power of 6 x end exponent minus 7 over x right parenthesis d x end cell cell equals integral left parenthesis x to the power of 1 half end exponent plus 3 e to the power of 6 x end exponent minus 7 over x right parenthesis d x end cell row blank cell equals 2 over 3 x to the power of 3 over 2 end exponent plus 1 half e to the power of 6 x end exponent minus 7 ln invisible function application vertical line x vertical line plus C end cell end table end style

begin mathsize 20px style integral left parenthesis fraction numerator 3 over denominator x plus 1 end fraction minus 5 e to the power of negative 2 x end exponent right parenthesis d x end style (7)

begin mathsize 20px style integral left parenthesis fraction numerator 3 over denominator x plus 1 end fraction minus 5 e to the power of negative 2 x end exponent right parenthesis d x equals 3 ln invisible function application vertical line x plus 1 vertical line plus 5 over 2 e to the power of negative 2 x end exponent plus C end style

begin mathsize 20px style integral fraction numerator 1 over denominator square root of 2 x minus 3 end root end fraction d x end style (8)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator 1 over denominator square root of 2 x minus 3 end root end fraction d x end cell cell equals integral left parenthesis 2 x minus 3 right parenthesis to the power of negative 1 half end exponent d x end cell row blank cell equals left parenthesis 2 x minus 3 right parenthesis to the power of 1 half end exponent plus C end cell end table end style

begin mathsize 20px style integral left parenthesis sin invisible function application left parenthesis 2 x minus 3 right parenthesis plus e to the power of 6 x minus 4 end exponent right parenthesis d x end style (9)

begin mathsize 20px style integral left parenthesis sin invisible function application left parenthesis 2 x minus 3 right parenthesis plus e to the power of 6 x minus 4 end exponent right parenthesis d x equals negative 1 half cos invisible function application left parenthesis 2 x minus 3 right parenthesis plus 1 over 6 e to the power of 6 x minus 4 end exponent plus C end style

begin mathsize 20px style integral 4 cos invisible function application left parenthesis 6 x plus 1 right parenthesis d x end style (10)

begin mathsize 20px style integral 4 cos invisible function application left parenthesis 6 x plus 1 right parenthesis d x equals 2 over 3 sin invisible function application left parenthesis 6 x plus 1 right parenthesis plus C end style

begin mathsize 20px style integral fraction numerator sin invisible function application x plus 3 cos invisible function application x over denominator 4 end fraction d x end style (11)

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral fraction numerator sin invisible function application x plus 3 cos invisible function application x over denominator 4 end fraction d x end cell cell equals integral left parenthesis fraction numerator sin invisible function application x over denominator 4 end fraction plus fraction numerator 3 cos invisible function application x over denominator 4 end fraction right parenthesis d x end cell row blank cell equals integral left parenthesis 1 fourth sin invisible function application x plus 3 over 4 cos invisible function application x right parenthesis d x end cell row blank cell equals negative 1 fourth cos invisible function application x plus 3 over 4 sin invisible function application x plus C end cell end table end style

 begin mathsize 20px style integral left parenthesis e to the power of 6 x end exponent plus left parenthesis 1 minus 2 x right parenthesis to the power of 6 right parenthesis d x end style (12)

begin mathsize 20px style integral left parenthesis e to the power of 6 x minus 4 end exponent plus left parenthesis 1 minus 2 x right parenthesis to the power of 6 right parenthesis d x equals 1 over 6 e to the power of 6 x minus 4 end exponent minus 1 over 14 left parenthesis 1 minus 2 x right parenthesis to the power of 7 plus C end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (13)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (14)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (15)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

 right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (16)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (17)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (18)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (19)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

 right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (20)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (21)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

أجد قيمة كل من التكاملات الآتية:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (22)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (23)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (24)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

(25) يتحرك جسيم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style، حيث begin mathsize 20px style t end style الزمن بالثواني، وbegin mathsize 20px style v end style سرعته المتجهة بالمتر لكل ثانية. إذا كان الموقع الابتدائي للجسيم right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style، فأجد موقع الجسيم بعد 4 ثانية من بدء الحركة.

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

بما أن الموقع الابتدائي للجسيم right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style إذن begin mathsize 20px style s left parenthesis 0 right parenthesis equals 2 end style:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style 

في كل مما يأتي المشتقة الأولى للاقتران begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis end style، ونقطة يمر بها منحنى begin mathsize 20px style bold italic y bold equals bold italic f bold left parenthesis bold italic x bold right parenthesis end style أستعمل المعلومات المعطاة لإيجاد قاعدة الاقتران begin mathsize 20px style bold italic f bold left parenthesis bold italic x bold right parenthesis end style:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (26)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

لإثبات ثابت التكامل، نعوض النقطة begin mathsize 20px style left parenthesis 0 comma 1 half right parenthesis end style:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (27)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

لإثبات ثابت التكامل، نعوض النقطة begin mathsize 20px style left parenthesis 1 comma negative 1 right parenthesis end style:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style (28)

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

لإثبات ثابت التكامل، نعوض النقطة begin mathsize 20px style left parenthesis 0 comma 4 right parenthesis end style:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

(29) إذا كان ميل المماس لمنحنى العلاقة begin mathsize 20px style y end style هو: begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals 2 x plus fraction numerator 3 over denominator x plus e end fraction end style، فأجد قاعدة العلاقة begin mathsize 20px style y end style، علماً بأن منحناها يمرّ بالنقطة begin mathsize 20px style left parenthesis e comma e squared right parenthesis end style.

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

لإثبات ثابت التكامل، نعوض النقطة begin mathsize 20px style left parenthesis e comma e squared right parenthesis end style:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

سمكبيئة: في دراسة تناولت أسماكاً في بحيرة، تبين أن عدد الأسماك begin mathsize 20px style bold italic P bold left parenthesis bold italic t bold right parenthesis end style يتغير بمعدل: right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style، حيث begin mathsize 20px style bold italic t end style الزمن بالسنوات بعد بدء الدراسة:

(30) أجد قاعدة الاقتران begin mathsize 20px style P left parenthesis t right parenthesis end style عند أي زمن begin mathsize 20px style t end style، علماً بأن عدد الأسماك عند بدء الدراسة هو 1000 سمكة.

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

بما أن عدد الأسماك عند بدء الدراسة هو 1000 سمكة، إذن begin mathsize 20px style P left parenthesis 0 right parenthesis equals 1000 end style ومنه:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

(31) أجد عدد الأسماك بعد 10 سنوات من بدء الدراسة.

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

عدد الأسماك بعد 10 سنوات من بدء الدراسة هو 1004 سمكة تقريباً.

طب: يلتئم جرح جلدي بمعدل يمكن نمذجته بالاقتران: right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style، حيث begin mathsize 20px style bold italic t end style عدد الأيام بعد الإصابة بالجرح، وbegin mathsize 20px style bold italic A bold left parenthesis bold italic t bold right parenthesis end style مساحة سطح الجرح بالسنتيمتر المربع:

(32) أجد قاعدة الاقتران begin mathsize 20px style A left parenthesis t right parenthesis end style، عند أي زمن begin mathsize 20px style t end style، علماً بأن مساحة سطح الجرح عند الإصابة هي right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style.

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

بما أن مساحة سطح الجرح عند الإصابة هي right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style، إذن begin mathsize 20px style A left parenthesis 0 right parenthesis equals 9 end style ومنه:

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

(33) أجد مساحة سطح الجرح بعد 5 أيام من الإصابة.

right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style

مساحة سطح الجرح بعد 5 أيام من الإصابة هي right to left begin mathsize 22px style rightwards harpoon over leftwards harpoon end style تقريباً.

إعداد : شبكة منهاجي التعليمية

10 / 02 / 2023

النقاشات